Probabilistic voting theory:
Peter Coughlin provides the most comprehensive and integrated analysis of probabilistic voting models to date. Probabilistic voting theory is the mathematical prediction of candidate behaviour in, or in anticipation of, elections in which candidates are unsure of voters' preferences. The theory...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1991
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | Peter Coughlin provides the most comprehensive and integrated analysis of probabilistic voting models to date. Probabilistic voting theory is the mathematical prediction of candidate behaviour in, or in anticipation of, elections in which candidates are unsure of voters' preferences. The theory asks first whether optimal candidate strategies can be determined given uncertainty about voter preferences, and if so, what exactly those strategies are given various circumstances. It allows the theorist to predict what public policies will be supported and what laws passed by elected officials when in office and what positions will be taken by them when running in elections. One of the leading contributors to this rapidly developing literature, at the leading edge of public choice theory, Coughlin both reviews the existing literature and presents results that unify and extend developments in the theory |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xi, 252 pages) |
ISBN: | 9780511895395 |
DOI: | 10.1017/CBO9780511895395 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043928523 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161202s1991 |||| o||u| ||||||eng d | ||
020 | |a 9780511895395 |c Online |9 978-0-511-89539-5 | ||
024 | 7 | |a 10.1017/CBO9780511895395 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511895395 | ||
035 | |a (OCoLC)967486976 | ||
035 | |a (DE-599)BVBBV043928523 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 324/.01 |2 20 | |
084 | |a MF 4100 |0 (DE-625)122713: |2 rvk | ||
084 | |a QC 160 |0 (DE-625)141257: |2 rvk | ||
100 | 1 | |a Coughlin, Peter J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probabilistic voting theory |c Peter J. Coughlin |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1991 | |
300 | |a 1 online resource (xi, 252 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
505 | 8 | |a 1. Majority rule and models of elections 2. Income redistribution and electoral equilibria 3. Properties of the redistributional equilibria 4. A more general election model 5. Concave social and candidate objective functions 6. Directional, stationary, and global electoral equilibria 7. Epilogue | |
520 | |a Peter Coughlin provides the most comprehensive and integrated analysis of probabilistic voting models to date. Probabilistic voting theory is the mathematical prediction of candidate behaviour in, or in anticipation of, elections in which candidates are unsure of voters' preferences. The theory asks first whether optimal candidate strategies can be determined given uncertainty about voter preferences, and if so, what exactly those strategies are given various circumstances. It allows the theorist to predict what public policies will be supported and what laws passed by elected officials when in office and what positions will be taken by them when running in elections. One of the leading contributors to this rapidly developing literature, at the leading edge of public choice theory, Coughlin both reviews the existing literature and presents results that unify and extend developments in the theory | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Social choice / Mathematical models | |
650 | 4 | |a Voting / Mathematical models | |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahlverhalten |0 (DE-588)4079009-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahl |0 (DE-588)4064286-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kollektiventscheidung |0 (DE-588)4022393-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Public-Choice-Theorie |0 (DE-588)4233109-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahlverhalten |0 (DE-588)4079009-5 |D s |
689 | 0 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahl |0 (DE-588)4064286-0 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wahl |0 (DE-588)4064286-0 |D s |
689 | 2 | 1 | |a Public-Choice-Theorie |0 (DE-588)4233109-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Kollektiventscheidung |0 (DE-588)4022393-0 |D s |
689 | 3 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-06329-6 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-36052-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511895395 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029337601 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511895395 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511895395 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176858333315072 |
---|---|
any_adam_object | |
author | Coughlin, Peter J. |
author_facet | Coughlin, Peter J. |
author_role | aut |
author_sort | Coughlin, Peter J. |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | BV043928523 |
classification_rvk | MF 4100 QC 160 |
collection | ZDB-20-CBO |
contents | 1. Majority rule and models of elections 2. Income redistribution and electoral equilibria 3. Properties of the redistributional equilibria 4. A more general election model 5. Concave social and candidate objective functions 6. Directional, stationary, and global electoral equilibria 7. Epilogue |
ctrlnum | (ZDB-20-CBO)CR9780511895395 (OCoLC)967486976 (DE-599)BVBBV043928523 |
dewey-full | 324/.01 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 324 - The political process |
dewey-raw | 324/.01 |
dewey-search | 324/.01 |
dewey-sort | 3324 11 |
dewey-tens | 320 - Political science (Politics and government) |
discipline | Politologie Wirtschaftswissenschaften |
doi_str_mv | 10.1017/CBO9780511895395 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04208nmm a2200721zc 4500</leader><controlfield tag="001">BV043928523</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161202s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511895395</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-89539-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511895395</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511895395</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967486976</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043928523</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">324/.01</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MF 4100</subfield><subfield code="0">(DE-625)122713:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QC 160</subfield><subfield code="0">(DE-625)141257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coughlin, Peter J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probabilistic voting theory</subfield><subfield code="c">Peter J. Coughlin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 252 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Majority rule and models of elections 2. Income redistribution and electoral equilibria 3. Properties of the redistributional equilibria 4. A more general election model 5. Concave social and candidate objective functions 6. Directional, stationary, and global electoral equilibria 7. Epilogue</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Peter Coughlin provides the most comprehensive and integrated analysis of probabilistic voting models to date. Probabilistic voting theory is the mathematical prediction of candidate behaviour in, or in anticipation of, elections in which candidates are unsure of voters' preferences. The theory asks first whether optimal candidate strategies can be determined given uncertainty about voter preferences, and if so, what exactly those strategies are given various circumstances. It allows the theorist to predict what public policies will be supported and what laws passed by elected officials when in office and what positions will be taken by them when running in elections. One of the leading contributors to this rapidly developing literature, at the leading edge of public choice theory, Coughlin both reviews the existing literature and presents results that unify and extend developments in the theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social choice / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Voting / Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahlverhalten</subfield><subfield code="0">(DE-588)4079009-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahl</subfield><subfield code="0">(DE-588)4064286-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kollektiventscheidung</subfield><subfield code="0">(DE-588)4022393-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Public-Choice-Theorie</subfield><subfield code="0">(DE-588)4233109-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahlverhalten</subfield><subfield code="0">(DE-588)4079009-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahl</subfield><subfield code="0">(DE-588)4064286-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahl</subfield><subfield code="0">(DE-588)4064286-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Public-Choice-Theorie</subfield><subfield code="0">(DE-588)4233109-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kollektiventscheidung</subfield><subfield code="0">(DE-588)4022393-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-06329-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-36052-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511895395</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029337601</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511895395</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511895395</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043928523 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:38:52Z |
institution | BVB |
isbn | 9780511895395 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029337601 |
oclc_num | 967486976 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 online resource (xi, 252 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Coughlin, Peter J. Verfasser aut Probabilistic voting theory Peter J. Coughlin Cambridge Cambridge University Press 1991 1 online resource (xi, 252 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) 1. Majority rule and models of elections 2. Income redistribution and electoral equilibria 3. Properties of the redistributional equilibria 4. A more general election model 5. Concave social and candidate objective functions 6. Directional, stationary, and global electoral equilibria 7. Epilogue Peter Coughlin provides the most comprehensive and integrated analysis of probabilistic voting models to date. Probabilistic voting theory is the mathematical prediction of candidate behaviour in, or in anticipation of, elections in which candidates are unsure of voters' preferences. The theory asks first whether optimal candidate strategies can be determined given uncertainty about voter preferences, and if so, what exactly those strategies are given various circumstances. It allows the theorist to predict what public policies will be supported and what laws passed by elected officials when in office and what positions will be taken by them when running in elections. One of the leading contributors to this rapidly developing literature, at the leading edge of public choice theory, Coughlin both reviews the existing literature and presents results that unify and extend developments in the theory Mathematisches Modell Social choice / Mathematical models Voting / Mathematical models Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Wahlverhalten (DE-588)4079009-5 gnd rswk-swf Wahl (DE-588)4064286-0 gnd rswk-swf Kollektiventscheidung (DE-588)4022393-0 gnd rswk-swf Public-Choice-Theorie (DE-588)4233109-2 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Wahlverhalten (DE-588)4079009-5 s Stochastisches Modell (DE-588)4057633-4 s 1\p DE-604 Wahl (DE-588)4064286-0 s Mathematisches Modell (DE-588)4114528-8 s 2\p DE-604 Public-Choice-Theorie (DE-588)4233109-2 s 3\p DE-604 Kollektiventscheidung (DE-588)4022393-0 s 4\p DE-604 Erscheint auch als Druckausgabe 978-0-521-06329-6 Erscheint auch als Druckausgabe 978-0-521-36052-4 https://doi.org/10.1017/CBO9780511895395 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Coughlin, Peter J. Probabilistic voting theory 1. Majority rule and models of elections 2. Income redistribution and electoral equilibria 3. Properties of the redistributional equilibria 4. A more general election model 5. Concave social and candidate objective functions 6. Directional, stationary, and global electoral equilibria 7. Epilogue Mathematisches Modell Social choice / Mathematical models Voting / Mathematical models Stochastisches Modell (DE-588)4057633-4 gnd Wahlverhalten (DE-588)4079009-5 gnd Wahl (DE-588)4064286-0 gnd Kollektiventscheidung (DE-588)4022393-0 gnd Public-Choice-Theorie (DE-588)4233109-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4057633-4 (DE-588)4079009-5 (DE-588)4064286-0 (DE-588)4022393-0 (DE-588)4233109-2 (DE-588)4114528-8 |
title | Probabilistic voting theory |
title_auth | Probabilistic voting theory |
title_exact_search | Probabilistic voting theory |
title_full | Probabilistic voting theory Peter J. Coughlin |
title_fullStr | Probabilistic voting theory Peter J. Coughlin |
title_full_unstemmed | Probabilistic voting theory Peter J. Coughlin |
title_short | Probabilistic voting theory |
title_sort | probabilistic voting theory |
topic | Mathematisches Modell Social choice / Mathematical models Voting / Mathematical models Stochastisches Modell (DE-588)4057633-4 gnd Wahlverhalten (DE-588)4079009-5 gnd Wahl (DE-588)4064286-0 gnd Kollektiventscheidung (DE-588)4022393-0 gnd Public-Choice-Theorie (DE-588)4233109-2 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Mathematisches Modell Social choice / Mathematical models Voting / Mathematical models Stochastisches Modell Wahlverhalten Wahl Kollektiventscheidung Public-Choice-Theorie |
url | https://doi.org/10.1017/CBO9780511895395 |
work_keys_str_mv | AT coughlinpeterj probabilisticvotingtheory |