Universal quantum computing: supervening decoherence - surmounting uncertainty
"This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, 100s of patents, 1,000s of papers and a Googolplex of considerations fill...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2017]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Zusammenfassung: | "This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, 100s of patents, 1,000s of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from myriad other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!"... |
Beschreibung: | xxiv, 608 Seiten Illustrationen, Diagramme |
ISBN: | 9789813145993 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043856509 | ||
003 | DE-604 | ||
005 | 20170928 | ||
007 | t | ||
008 | 161102s2017 xxua||| |||| 00||| eng d | ||
010 | |a 016022859 | ||
020 | |a 9789813145993 |c hbk. |9 978-981-3145-99-3 | ||
035 | |a (OCoLC)962369932 | ||
035 | |a (DE-599)BVBBV043856509 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-11 |a DE-355 |a DE-19 | ||
050 | 0 | |a QA76.889 | |
082 | 0 | |a 006.3/843 |2 23 | |
084 | |a ST 152 |0 (DE-625)143596: |2 rvk | ||
084 | |a UK 8400 |0 (DE-625)145812: |2 rvk | ||
100 | 1 | |a Amoroso, Richard L. |d 1946- |e Verfasser |0 (DE-588)1052646352 |4 aut | |
245 | 1 | 0 | |a Universal quantum computing |b supervening decoherence - surmounting uncertainty |c Richard L. Amoroso, Noetic Advanced Studies Institute, USA |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2017] | |
264 | 4 | |c © 2017 | |
300 | |a xxiv, 608 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | |a "This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, 100s of patents, 1,000s of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from myriad other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!"... | ||
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum computing | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Quantencomputer |0 (DE-588)4533372-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantencomputer |0 (DE-588)4533372-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m LoC Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029266704 |
Datensatz im Suchindex
_version_ | 1804176733461544960 |
---|---|
adam_text | UNIVERSAL QUANTUM COMPUTING
/ AMOROSO, RICHARD L.YYEAUTHOR
: 2016
TABLE OF CONTENTS / INHALTSVERZEICHNIS
FROM CONCEPT TO CONUNDRUM
CORNUCOPIA OF QUANTUM LOGIC GATES
MULTIVERSE COSMOLOGY: A NEW BASIS OF REALITY
A REVOLUTION IN THE CONCEPTION OF MATTER
FROM QUBITS TO RELATIVISTIC (R-QUBITS)
UTILITY OF UNIFIED FIELD MECHANICS
SURMOUNTING UNCERTAINTY SUPERVENING DECOHERENCE
MEASUREMENT WITH CERTAINTY
TOPOLOGICAL QUANTUM FIELD THEORY
TOPOLOGICAL QUANTUM COMPUTING
A NEW GROUP OF TRANSFORMATIONS
ONTOLOGICAL-PHASE TOPOLOGICAL FIELD THEORY
NEW CLASSES OF QUANTUM ALGORITHMS
CLASS II MESOIONIC XANTHINES AS POTENTIAL TEN QUBIT SUBSTRATE REGISTERS
EMPIRICAL REGIMEN - PROOF OF CONCEPT
UNIVERSAL QUANTUM COMPUTING PROTOTYPE MODELING
GOEDELIZING FINE STRUCTURE
INITIAL QUANTUM COMPUTING APPLICATIONS: 1ST GEN
ADVANCED QUANTUM COMPUTING APPLICATIONS: 2ND GEN
FUTURE OF QUANTUM COMPUTING: 3RD GEN
DIESES SCHRIFTSTCK WURDE MASCHINELL ERZEUGT.
Titel: Universal quantum computing
Autor: Amoroso, Richard L
Jahr: 2017
Contents
Preface v
Dedication xv
Chap 1 From Concept to Conundrum 1
1.1 Preamble - Bits, Qubits and Complex Space 1
1.2 Panoply of QC Architectures and Substrates - Limited
Overview 4
1..2.1 Quantum Turing Machine 4
1.2.2 Quantum Circuit Computing Model 5
1.2.3 Measurement Based Quantum Computing 5
1.2.4 Adiabatic Quantum Computer 6
1.2.5 The Kane Nuclear Spin QC 9
1.2.6 QRAM Models of Quantum Computation 10
1.2.7 Electrons-On-Helium Quantum Computers 11
1.2.8 Fullerene-Based ESR Quantum Computer 13
1.2.9 Superconductor-Based Quantum Computers 14
1.2.9.1 SQUID-BASED SUPERCONDUCTOR QC 14
1.2.9.2 TRAPPED ION-BASED SUPERCONDUCTOR QC 15
1.2.10 Diamond Based Quantum Computers 18
1.2.11 Quantum Dot Quantum Computer 19
1.2.12 Transistor-Based Quantum Computer 21
1.2.13 Molecular Magnet Quantum Computer 22
1.2.14 Bose-Einstein Condensate-Based Quantum Computer 23
1.2.15 Rare-Earth-Metal-Jon-Doped Inorganic Crystal QC 25
1.2.16 Linear Optical Quantum Computer (LOQC) 26
1.2.17 Optical Lattice Based Quantum Computing (OLQC) 28
1.2.18 Cavity Quantum Electrodynamics Quantum Computing 29
1.2.19 Nuclear Magnetic Resonance (hiMR)
Quantum Computing 30
1.2.19.1 LIQUID-STATE NMRQC 31
1.2.19.2 SOLID-STATE NMRQC 33
1.2.20 Topological Quantum Computing (TQC) 33
xviii Universal Quantum Computing
1.2.21 Unified Field Mechanical Quantum Computing 35
1.3 Concept 35
1.4. Conundrum - Hypotheses non Fingo 37
1.4.1 The Church-Turing Hypothesis 38
1.4.2 The Church-Turing-Deutsch Thesis 39
1.4.3 Perspicacious Perspicacity - Who Has it?
Where can I get Some? 40
References 41
Chap 2 Cornucopia of Quantum Logic Gates 46
2.1 Fundamental Properties of Gate Operations 46
2.2 Unitary Operators as Quantum Gates 48
2.3 Some Fundamental Quantum Gates 50
2.4 Properties of the Hadamard Gate 56
2.5 Rotation Gate Quantum Multiplexer 57
References 60
Chap 3 Multiverse Cosmology: A New Basis of Reality 62
3.1 Overview 62
3.2 Introduction to Cosmological Issues 63
3.3 Clarification of Pertinent Cosmological Nomenclature 66
3.4 Parallel Interpretations of Cosmological Data 70
3.5 Euclidean/Minkowski Geometry as Basis for Observed
Reality 70
3.6 Philosophy of Space in Multiverse Cosmology-
Origin of Structure 72
3.7 Space: Relational Versus Absolute 74
3.8 Physical Cosmology of Fundamental Least Cosmological Unit 79
3.9 Holographic Anthropic Multiverse Cosmology 81
3.10 Overview of the Formalism for Anthropic Cosmology 83
3.11 Transformation of Space into Time 87
3.12 Energy Dependent Spacetime Metric 88
3.13 The Wheeler Geon Concept Extended to Noetic Superspace 88
3.14 The Hyper-Geon Domain of Multiverse Noetic Field Theory 89
3.15 Interregnum 90
3.16 Ambulatory Hoopla 92
3.17 Ultimate Evolution of M-Theory 97
3.18 String/Brane Dynamics 99
3.19 New Horizons Beyond the Standard Model 101
Contents xi
3.20 Ultimate Geometry of Reality, Dimensionality,
Arrow of Time 103
3.21 New Cosmological Framework 104
3.22 Current Philosophy of Temporal Science 105
3.23 Complementarity of Physical Time and Observer Time 107
3.24 The Vacuum Origin of Thermodynamics and Entropy 115
3.25 Spin-Exchange Compactification and the
Noetic Transformation 117
3.26 Dirac Spherical Rotation Inherent to LCU Transformation 120
References 124
Chap 4 A Revolution in the Conception of Matter 131
4.1 Point-Particle Infinite Mass-Energy 131
4.2 Space-Antispace as a UFM Intermediary 132
4.3 The Nilpotent Quaternionic Representation of Fermions 134
4.4 The Nature of Quantum Reality 143
4.5 Revolution in Concept of Matter 148
References 157
Chap 5 From Qubits to Relativistic (R-Qubits) 160
5.1 Introduction 161
5.2 Case for Relativistic Information Processing 164
5.3 Microphysical Computation Limits: The Relativistic R-Qubit 165
5.3.1 Aspects of the Lorentz Transformation 165
5.3.2 Massive Particles 16 8
5.3.3 Aspects of the Poincairé Transformation 169
5.4 Additional Aspects of R-Qubits and Relativistic Computing 170
5.5 Current Thinking on Relativistic Information Processing 172
5.6 Relativistic Quantum Information Theory and Computation 175
5.7 Physical Reality of Quantum States 178
5.8 Unified Field Mechanical Ontological-Phase TFT 180
References 180
Chap 6 Utility of Unified Field Mechanics 183
6.1 Unified Field Mechanics: What is it, What are
the Implications? 183
6.2 Précis 185
6.3 The LCU Concept Key to Developing Unified Field
Mechanics 188
6.4 Pragmatic Testing of the UFM Paradigm 192
xx Universal Quantum Computing
6.5 Exploring Novel Cyclic Extensions of Hamilton s
Dual-Quaternion Algebra 195
6.6 Brief Quaternion Review 195
6.7 Background and Utility of New Quaternion Extensions 197
6.8 A New Concept in Quaternion Algebra - The 1st Triplet 198
6.9 Vectors, Scalars, Quaternions and Commutativity 200
6.10 Toward Completing the Hypercube: The 2nd Triplet 202
6.10.1 Higher Doublings - Planar to Riemann Sphere 203
6.10.2 Nilpotent Idempotent Vacuum Doublings 204
6.10.3 As GeneralizedEquation 204
6.10.4 As Tensor Transformation 204
6.11 Quaternion Mirrorhouses 204
6.11.1 Observation as Mirroring 206
6.11.2 Mirror Symmetry Experiment 208
6.12 Calabi-Yau Manifolds - Brief Review 208
6.13 Search for Commutative - Anticommutative Cyclical Algebra 209
6.14 Indicia for Unified Field Mechanics by
Tight-Bound States (TB S) 218
6.15 Building the UFM TBS Experimental Protocol 223
6.16 Some Concluding Remarks - Realm of Observation 231
References 233
Chap 7 Surmounting Uncertainty Supervening Decoherence 236
7.1 Phenomenology Versus Ontology 237
7.2 The Turing Paradox and Quantum Zeno Effect 245
7.3 From the Perspective of Multiverse Cosmology 246
7.4 Micromagnetics and LSXD Topological Charge
Brane Conformation 251
7.5 Catastrophe Theory and the M-Theoretic Formalism 259
7.6 Protocol for Empirically Testing Unified Theoretic Cosmology 265
7.7 Introduction to a P = 1 Experimental Design 268
7.8 Conclusions 280
References 281
Chap 8 Measurement with Certainty 288
8.1 Introduction - Summary of Purpose 289
8.2 The Principle of Superposition 292
8.3 Oscillatory Rabi NMR Resonance Cycles 294
8.4 The Problem of Decoherence 295
Contents xxi
8.5 Insight into the Measurement Problem 297
8.6 New Physics from Anthropic Cosmology 300
8.6.1 Spacetime Exciplex - Uf Noeon Mediator 303
8.6.2 Quantum Phenomenology Versus Noetic
UFM Field Ontology 305
8.7 The Basement of Reality - Through the Glass Ceiling 309
8.8 Empirical Tests of UFM Cosmology Summarized 311
8.8.1 Summary of Experimental Protocols 312
8.8.2 Review of Key Experimental Details 314
8.9 Unified Field Mechanical (UFM) Précis - Required Parameters 318
8.10 Formalizing the Noeon, New Physical Unit Quantifying
UFM Energy 320
8.11 Quarkonium Flag Manifold Topology 323
8.12 Singularities, Unitary Operators and Domains of Action 326
8.12.1 Semi-Classical Limit 326
8.12.2 Semi-Quantum Limit 327
8.13 Measurement 327
8.14 The No-Cloning Theorem (NCT) 330
8.14.1 Proof of the Quantum No-Cloning Theorem (NCT) 331
8.14.2 Quantum No-Deleting Theorem 333
8.15 The Tight-Bound State Protocol 333
8.16 Indicia of the UFM Tight Bound State CQED Model 336
8.17 Building the UFM TBS Experimental Protocol 338
8.18 Issues of Experimental Design 351
References 356
Chap 9 Topological Quantum Field Theory 364
9.1 Topological Quantum Field Theory (TQFT) 364
9.2 Schwarz-Type Topological Field Theories 366
9.3 Witten-Type Topological Field Theories 366
9.4 Dodecahedral AdSVCFT Duality 367
9.5 Chern-Simons Theory with Knots and Links 367
9.6 The Alexander Polynomial Skein Relation 371
9.7 The Jones Polynomial and Trefoil Knot Crossings 372
9.8 Cobordism in TQFT - Atiyah s Definitions 375
9.9 Ab Infinito Ad Infinitum 379
References 380
Chap 10 Topological Quantum Computing 382
10.1 The Topological Quantum Computer (TQC) 382
xxii Universal Quantum Computing
10.2 Topological Quantum Computing 383
10.2.1 Quasiparticles in v - 5/2 FQHStates 385
10.2.2 Theoretical Models for the v = 5/2 State 386
10.2.3 Spin Polarization of the v = 5/2 State 386
10.3 Quantum Hall Quasiparticle Anyon Braiding 387
10.3.1 Topological Insulators 388
10.3.2 Quasiparticle Interferometry and Topological Protection 390
10.4 The Jones Polynomial 392
10.5 Anon ye Fabled Anyon 393
References 394
Chap 11 A New Group of Transformations 399
11.1 Introduction 400
11.2 Metric Space and the Line Element 401
11.3 Why a New Transformation Group? 403
11.4 Micromagnetics and LSXD Topological Charge
Driving Brane Conformation 403
11.5 Lorentz Condition in Complex 8-Space and
Tachyonic Signaling 404
11.6 Velocity of Propagation in Complex 8-Space 411
11.7 Metaphor Series to Clarify the Transformation of HD
Topology 413
11.8 Spin Exchange Compactification Dynamics and
Permutation of Dimensions in the UFM Transformation 418
11.9 Preparing the UFM Spacetime Transformation 421
11.10 Developing the Line Element for UFM Superspace 422
11.11 Dirac Spherical Rotation Inherent to Transformation
of the Fundamental Least-Unit 429
11.12 Final Thought on the UFM Spacetime Transformation 431
References 433
Chap 12 Ontological-Phase Topological Field Theory 437
12.1 Abductive a Priori a Posteriori Tautology 438
12.2 The Phasor (Phase Vector) Complex Probability Amplitude 439
12.2.1 Complex Phase Factor 441
12.2.2 Geometric Phase - Berry Phase 443
12.2.3 The Toric Code 445
12.3 Transitioning from TQFT to OPTFT 447
12.3.1 The A and B-Models of Topological Field Theory 448
Contents xxiii
12.3.2 Dualities Between Topological String Theories (TSTs) 448
12.3.3 The Holomorphic Anomaly 449
12.4 Topological Vacuum Bubbles by Anyon Braiding 449
12.5 Topological Switching - Key to Ontological-Phase 451
12.6 Dual Amplituhedron Geometry and Epiontic Realism 467
References 471
Chap 13 New Classes of Quantum Algorithms 475
13.1 Introduction - From al-Khwarizmi to Unified Field-Gorhythms 475
13.2 The Church-Turing Hypothesis 477
13.3 Algorithms Based on the Quantum Fourier Transform 477
13.4 Exponential Speedup by Quantum Information Processing 479
13.5 Classical Holographic Reduction Algorithms 482
13.6 Ontological-Phase UFM Holographic Algorithms 484
13.7 The Superimplicate Order and Instantaneous UQC Algorithms 488
13.8 Some Ontological-Phase Geometric Topology 491
13.9 Summation 496
References 497
Chap 14 Class II Mesoionic Xanthines as Potential
Ten Qubit Substrate Registers 501
14.1 Introduction 501
14.2 Resonance stabilization in Class II Mesoionic Xanthines 503
14.3 Projectors and Projection Operators 506
14.4 Tensor Products and Associated Operators 509
14.5 Commutation Relations for the Pauli Matrices 511
14.6 Quantum Superposition and Quantum Probabilities of
10-Qubit Mesoionic Registers 515
14.7 Projectors and Projection Operators 518
14.8 Density Measurement Operator and Quantum State
Ensembles 519
14.9 State-Function Time Evolution of a Closed Quantum System 521
14.10 Quantum Simulations of Hamiltonians 522
14.11 Initialization of Mesoionic Xanthine Registers 524
14.12 Xanthine Molecule Electrostatic Potentials 533
14.13 Conclusion 533
References 535
Chap 15 Universal Quantum Computing Prototype Modeling 537
15.1 Introduction - Basics of Quantum Computing (QC) 538
xxiv Universal Quantum Computing
15.2 Overview of New Fundamental Parameters 540
15.3 The Causal Separation of Phenomenology from Ontology 541
15.4 Review of Angular Momentum and Pauli-Dirac Spin
Matrices 543
15.5 Noumenal Reality Versus Phenomenology of Quantum
Theory 546
15.6 Justification for the Incursive UFM Model 547
15.7 Essential Properties of Complex 12-Space 550
15.8 Geometric Introduction to the UFM QC Ontology 564
15.9 Essential Parameters of the Incursive Oscillator 568
15.10 Ontological I/O by Superseding Quantum Uncertainty 570
15.11 A Twistor Approach to the UQC I/O Ontology 574
15.12 Class II Mesoionic Xanthines as Potential 10-Qubit
Quantum Computer Substrate Registers 578
15.13 Initialization of Mesoionic Xanthine Registers 580
15.14 Conclusions 589
References 590
Index 594
|
any_adam_object | 1 |
author | Amoroso, Richard L. 1946- |
author_GND | (DE-588)1052646352 |
author_facet | Amoroso, Richard L. 1946- |
author_role | aut |
author_sort | Amoroso, Richard L. 1946- |
author_variant | r l a rl rla |
building | Verbundindex |
bvnumber | BV043856509 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.889 |
callnumber-search | QA76.889 |
callnumber-sort | QA 276.889 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 152 UK 8400 |
ctrlnum | (OCoLC)962369932 (DE-599)BVBBV043856509 |
dewey-full | 006.3/843 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/843 |
dewey-search | 006.3/843 |
dewey-sort | 16.3 3843 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Physik Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03289nam a2200445 c 4500</leader><controlfield tag="001">BV043856509</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170928 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">161102s2017 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">016022859</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813145993</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-981-3145-99-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)962369932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043856509</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.889</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/843</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 152</subfield><subfield code="0">(DE-625)143596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 8400</subfield><subfield code="0">(DE-625)145812:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Amoroso, Richard L.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1052646352</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universal quantum computing</subfield><subfield code="b">supervening decoherence - surmounting uncertainty</subfield><subfield code="c">Richard L. Amoroso, Noetic Advanced Studies Institute, USA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 608 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, 100s of patents, 1,000s of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from myriad other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!"...</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">LoC Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029266704</subfield></datafield></record></collection> |
id | DE-604.BV043856509 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:36:52Z |
institution | BVB |
isbn | 9789813145993 |
language | English |
lccn | 016022859 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029266704 |
oclc_num | 962369932 |
open_access_boolean | |
owner | DE-703 DE-11 DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-11 DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
physical | xxiv, 608 Seiten Illustrationen, Diagramme |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | World Scientific |
record_format | marc |
spelling | Amoroso, Richard L. 1946- Verfasser (DE-588)1052646352 aut Universal quantum computing supervening decoherence - surmounting uncertainty Richard L. Amoroso, Noetic Advanced Studies Institute, USA New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2017] © 2017 xxiv, 608 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier "This breakthrough volume touts having dissolved the remaining barriers to implementing Bulk Universal Quantum Computing (UQC), and as such most likely describes the most advanced QC development platform. Numerous books, 100s of patents, 1,000s of papers and a Googolplex of considerations fill the pantheon of QC R&D. Of late QC mathemagicians claim QCs already exist; but by what chimeric definition. Does flipping a few qubits in a logic gate without an algorithm qualify as quantum computing? In physics, theory bears little weight without rigorous experimental confirmation, less if new, radical or a paradigm shift. This volume develops quantum computing based on '3rd regime' physics of Unified Field Mechanics (UFM). What distinguishes this work from myriad other avenues to UQC under study? Virtually all R&D paths struggle with technology and decoherence. If highly favored room-sized cryogenically cooled QCs ever become successful, they would be reminiscent of the city block-sized Eniac computer of 1946. The QC prototype proposed herein is room temperature and tabletop. It is dramatically different in that it is not confined to the limitations of quantum mechanics; since it is based on principles of UFM the Uncertainty Principle and Decoherence no longer apply. Thus this QC model could be implemented on any other quantum platform!"... Quantentheorie Quantum computing Quantum theory Quantencomputer (DE-588)4533372-5 gnd rswk-swf Quantencomputer (DE-588)4533372-5 s DE-604 LoC Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Amoroso, Richard L. 1946- Universal quantum computing supervening decoherence - surmounting uncertainty Quantentheorie Quantum computing Quantum theory Quantencomputer (DE-588)4533372-5 gnd |
subject_GND | (DE-588)4533372-5 |
title | Universal quantum computing supervening decoherence - surmounting uncertainty |
title_auth | Universal quantum computing supervening decoherence - surmounting uncertainty |
title_exact_search | Universal quantum computing supervening decoherence - surmounting uncertainty |
title_full | Universal quantum computing supervening decoherence - surmounting uncertainty Richard L. Amoroso, Noetic Advanced Studies Institute, USA |
title_fullStr | Universal quantum computing supervening decoherence - surmounting uncertainty Richard L. Amoroso, Noetic Advanced Studies Institute, USA |
title_full_unstemmed | Universal quantum computing supervening decoherence - surmounting uncertainty Richard L. Amoroso, Noetic Advanced Studies Institute, USA |
title_short | Universal quantum computing |
title_sort | universal quantum computing supervening decoherence surmounting uncertainty |
title_sub | supervening decoherence - surmounting uncertainty |
topic | Quantentheorie Quantum computing Quantum theory Quantencomputer (DE-588)4533372-5 gnd |
topic_facet | Quantentheorie Quantum computing Quantum theory Quantencomputer |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029266704&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT amorosorichardl universalquantumcomputingsuperveningdecoherencesurmountinguncertainty |