Hypo-Analytic Structures: Local Theory (PMS-40)
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
University Press
[2014]
|
Schriftenreihe: | Princeton mathematical series
40 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 |
Beschreibung: | Cover; Contents |
Beschreibung: | 1 Online-Ressource (516 Seiten) |
ISBN: | 9781400862887 1400862884 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043778184 | ||
003 | DE-604 | ||
005 | 20191021 | ||
007 | cr|uuu---uuuuu | ||
008 | 160920s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781400862887 |9 978-1-4008-6288-7 | ||
020 | |a 1400862884 |9 1-4008-6288-4 | ||
035 | |a (ZDB-4-EBA)ocn884012968 | ||
035 | |a (OCoLC)884012968 | ||
035 | |a (DE-599)BVBBV043778184 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.353 | |
082 | 0 | |a 515.353 | |
100 | 1 | |a Trèves, François |d 1930- |0 (DE-588)107758652 |4 aut | |
245 | 1 | 0 | |a Hypo-Analytic Structures |b Local Theory (PMS-40) |c François Trèves |
264 | 1 | |a Princeton |b University Press |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 Online-Ressource (516 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton mathematical series |v 40 | |
500 | |a Cover; Contents | ||
505 | 8 | |a In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Vector fields | |
650 | 7 | |a MATHEMATICS / Geometry / Differential |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Vector fields |2 fast | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Vector fields | |
650 | 0 | 7 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Überbestimmtes System |0 (DE-588)4236167-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 0 | 2 | |a Komplexe Mannigfaltigkeit |0 (DE-588)4031996-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 1 | 2 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |D s |
689 | 2 | 1 | |a Überbestimmtes System |0 (DE-588)4236167-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
830 | 0 | |a Princeton mathematical series |v 40 |w (DE-604)BV045898993 |9 40 | |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029189244 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=790981 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=790981 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176606177001472 |
---|---|
any_adam_object | |
author | Trèves, François 1930- |
author_GND | (DE-588)107758652 |
author_facet | Trèves, François 1930- |
author_role | aut |
author_sort | Trèves, François 1930- |
author_variant | f t ft |
building | Verbundindex |
bvnumber | BV043778184 |
collection | ZDB-4-EBA |
contents | In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations |
ctrlnum | (ZDB-4-EBA)ocn884012968 (OCoLC)884012968 (DE-599)BVBBV043778184 |
dewey-full | 515/.353 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 515.353 |
dewey-search | 515/.353 515.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03855nmm a2200781zcb4500</leader><controlfield tag="001">BV043778184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191021 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160920s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400862887</subfield><subfield code="9">978-1-4008-6288-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400862884</subfield><subfield code="9">1-4008-6288-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)ocn884012968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)884012968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043778184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trèves, François</subfield><subfield code="d">1930-</subfield><subfield code="0">(DE-588)107758652</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypo-Analytic Structures</subfield><subfield code="b">Local Theory (PMS-40)</subfield><subfield code="c">François Trèves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">University Press</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (516 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton mathematical series</subfield><subfield code="v">40</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Contents</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector fields</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / Differential</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector fields</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überbestimmtes System</subfield><subfield code="0">(DE-588)4236167-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4031996-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Überbestimmtes System</subfield><subfield code="0">(DE-588)4236167-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton mathematical series</subfield><subfield code="v">40</subfield><subfield code="w">(DE-604)BV045898993</subfield><subfield code="9">40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029189244</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=790981</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=790981</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043778184 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:34:51Z |
institution | BVB |
isbn | 9781400862887 1400862884 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029189244 |
oclc_num | 884012968 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (516 Seiten) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | University Press |
record_format | marc |
series | Princeton mathematical series |
series2 | Princeton mathematical series |
spelling | Trèves, François 1930- (DE-588)107758652 aut Hypo-Analytic Structures Local Theory (PMS-40) François Trèves Princeton University Press [2014] © 2014 1 Online-Ressource (516 Seiten) txt rdacontent c rdamedia cr rdacarrier Princeton mathematical series 40 Cover; Contents In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations Differential equations, Partial Manifolds (Mathematics) Vector fields MATHEMATICS / Geometry / Differential bisacsh MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Differential equations, Partial fast Manifolds (Mathematics) fast Vector fields fast Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd rswk-swf Vektorfeld (DE-588)4139571-2 gnd rswk-swf Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Überbestimmtes System (DE-588)4236167-9 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Vektorfeld (DE-588)4139571-2 s Komplexe Mannigfaltigkeit (DE-588)4031996-9 s 1\p DE-604 Mannigfaltigkeit (DE-588)4037379-4 s 2\p DE-604 Lineare partielle Differentialgleichung (DE-588)4167708-0 s Überbestimmtes System (DE-588)4236167-9 s 3\p DE-604 Princeton mathematical series 40 (DE-604)BV045898993 40 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Trèves, François 1930- Hypo-Analytic Structures Local Theory (PMS-40) Princeton mathematical series In Hypo-Analytic Structures Franois Treves provides a systematic approach to the study of the differential structures on manifolds defined by systems of complex vector fields. Serving as his main examples are the elliptic complexes, among which the De Rham and Dolbeault are the best known, and the tangential Cauchy-Riemann operators. Basic geometric entities attached to those structures are isolated, such as maximally real submanifolds and orbits of the system. Treves discusses the existence, uniqueness, and approximation of local solutions to homogeneous and inhomogeneous equations Differential equations, Partial Manifolds (Mathematics) Vector fields MATHEMATICS / Geometry / Differential bisacsh MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Differential equations, Partial fast Manifolds (Mathematics) fast Vector fields fast Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd Vektorfeld (DE-588)4139571-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Überbestimmtes System (DE-588)4236167-9 gnd |
subject_GND | (DE-588)4167708-0 (DE-588)4139571-2 (DE-588)4031996-9 (DE-588)4044779-0 (DE-588)4037379-4 (DE-588)4236167-9 |
title | Hypo-Analytic Structures Local Theory (PMS-40) |
title_auth | Hypo-Analytic Structures Local Theory (PMS-40) |
title_exact_search | Hypo-Analytic Structures Local Theory (PMS-40) |
title_full | Hypo-Analytic Structures Local Theory (PMS-40) François Trèves |
title_fullStr | Hypo-Analytic Structures Local Theory (PMS-40) François Trèves |
title_full_unstemmed | Hypo-Analytic Structures Local Theory (PMS-40) François Trèves |
title_short | Hypo-Analytic Structures |
title_sort | hypo analytic structures local theory pms 40 |
title_sub | Local Theory (PMS-40) |
topic | Differential equations, Partial Manifolds (Mathematics) Vector fields MATHEMATICS / Geometry / Differential bisacsh MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Differential equations, Partial fast Manifolds (Mathematics) fast Vector fields fast Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd Vektorfeld (DE-588)4139571-2 gnd Komplexe Mannigfaltigkeit (DE-588)4031996-9 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Überbestimmtes System (DE-588)4236167-9 gnd |
topic_facet | Differential equations, Partial Manifolds (Mathematics) Vector fields MATHEMATICS / Geometry / Differential MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Lineare partielle Differentialgleichung Vektorfeld Komplexe Mannigfaltigkeit Partielle Differentialgleichung Mannigfaltigkeit Überbestimmtes System |
volume_link | (DE-604)BV045898993 |
work_keys_str_mv | AT trevesfrancois hypoanalyticstructureslocaltheorypms40 |