Strong rigidity of locally symmetric spaces:
Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ
Princeton University Press
1973
|
Schriftenreihe: | Annals of Mathematics Studies
number 78 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) |
Beschreibung: | 1 online resource |
ISBN: | 9781400881833 |
DOI: | 10.1515/9781400881833 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV043712443 | ||
003 | DE-604 | ||
005 | 20191218 | ||
007 | cr|uuu---uuuuu | ||
008 | 160810s1973 |||| o||u| ||||||eng d | ||
020 | |a 9781400881833 |9 978-1-4008-8183-3 | ||
024 | 7 | |a 10.1515/9781400881833 |2 doi | |
035 | |a (ZDB-23-DGG)9781400881833 | ||
035 | |a (OCoLC)1165462698 | ||
035 | |a (DE-599)BVBBV043712443 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
082 | 0 | |a 516/.36 |2 23 | |
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Mostow, George D. |d 1923- |0 (DE-588)1081049502 |4 aut | |
245 | 1 | 0 | |a Strong rigidity of locally symmetric spaces |c G. D. Mostow |
264 | 1 | |a Princeton, NJ |b Princeton University Press |c 1973 | |
264 | 4 | |c © 1973 | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of Mathematics Studies |v number 78 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) | ||
520 | |a Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof | ||
546 | |a In English | ||
650 | 4 | |a Lie groups | |
650 | 4 | |a Riemannian manifolds | |
650 | 4 | |a Rigidity (Geometry) | |
650 | 4 | |a Symmetric spaces | |
650 | 0 | 7 | |a Lokal symmetrischer Raum |0 (DE-588)4168100-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rigidität |0 (DE-588)4178149-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Starrheit |g Mathematik |0 (DE-588)4326739-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal symmetrischer Raum |0 (DE-588)4168100-9 |D s |
689 | 0 | 1 | |a Rigidität |0 (DE-588)4178149-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lokal symmetrischer Raum |0 (DE-588)4168100-9 |D s |
689 | 1 | 1 | |a Starrheit |g Mathematik |0 (DE-588)4326739-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0-691-08136-0 |
830 | 0 | |a Annals of Mathematics Studies |v number 78 |w (DE-604)BV040389493 |9 78 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9781400881833?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-PST | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029124671 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804176498472517632 |
---|---|
any_adam_object | |
author | Mostow, George D. 1923- |
author_GND | (DE-588)1081049502 |
author_facet | Mostow, George D. 1923- |
author_role | aut |
author_sort | Mostow, George D. 1923- |
author_variant | g d m gd gdm |
building | Verbundindex |
bvnumber | BV043712443 |
classification_rvk | SI 830 SK 350 |
collection | ZDB-23-DGG ZDB-23-PST |
ctrlnum | (ZDB-23-DGG)9781400881833 (OCoLC)1165462698 (DE-599)BVBBV043712443 |
dewey-full | 516/.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.36 |
dewey-search | 516/.36 |
dewey-sort | 3516 236 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9781400881833 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03310nmm a2200601 cb4500</leader><controlfield tag="001">BV043712443</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191218 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160810s1973 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400881833</subfield><subfield code="9">978-1-4008-8183-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400881833</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781400881833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165462698</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043712443</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mostow, George D.</subfield><subfield code="d">1923-</subfield><subfield code="0">(DE-588)1081049502</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong rigidity of locally symmetric spaces</subfield><subfield code="c">G. D. Mostow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1973</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1973</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 78</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemannian manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rigidity (Geometry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal symmetrischer Raum</subfield><subfield code="0">(DE-588)4168100-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rigidität</subfield><subfield code="0">(DE-588)4178149-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Starrheit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4326739-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal symmetrischer Raum</subfield><subfield code="0">(DE-588)4168100-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rigidität</subfield><subfield code="0">(DE-588)4178149-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lokal symmetrischer Raum</subfield><subfield code="0">(DE-588)4168100-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Starrheit</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4326739-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0-691-08136-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 78</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">78</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400881833?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029124671</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV043712443 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:08Z |
institution | BVB |
isbn | 9781400881833 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029124671 |
oclc_num | 1165462698 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 online resource |
psigel | ZDB-23-DGG ZDB-23-PST |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Princeton University Press |
record_format | marc |
series | Annals of Mathematics Studies |
series2 | Annals of Mathematics Studies |
spelling | Mostow, George D. 1923- (DE-588)1081049502 aut Strong rigidity of locally symmetric spaces G. D. Mostow Princeton, NJ Princeton University Press 1973 © 1973 1 online resource txt rdacontent c rdamedia cr rdacarrier Annals of Mathematics Studies number 78 Description based on online resource; title from PDF title page (publisher's Web site, viewed Jul. 04., 2016) Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls "strong rigidity": this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan. The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan's symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit's geometries. In his proof the author introduces two new notions having independent interest: one is "pseudo-isometries"; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof In English Lie groups Riemannian manifolds Rigidity (Geometry) Symmetric spaces Lokal symmetrischer Raum (DE-588)4168100-9 gnd rswk-swf Rigidität (DE-588)4178149-1 gnd rswk-swf Starrheit Mathematik (DE-588)4326739-7 gnd rswk-swf Lokal symmetrischer Raum (DE-588)4168100-9 s Rigidität (DE-588)4178149-1 s 1\p DE-604 Starrheit Mathematik (DE-588)4326739-7 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 0-691-08136-0 Annals of Mathematics Studies number 78 (DE-604)BV040389493 78 https://doi.org/10.1515/9781400881833?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mostow, George D. 1923- Strong rigidity of locally symmetric spaces Annals of Mathematics Studies Lie groups Riemannian manifolds Rigidity (Geometry) Symmetric spaces Lokal symmetrischer Raum (DE-588)4168100-9 gnd Rigidität (DE-588)4178149-1 gnd Starrheit Mathematik (DE-588)4326739-7 gnd |
subject_GND | (DE-588)4168100-9 (DE-588)4178149-1 (DE-588)4326739-7 |
title | Strong rigidity of locally symmetric spaces |
title_auth | Strong rigidity of locally symmetric spaces |
title_exact_search | Strong rigidity of locally symmetric spaces |
title_full | Strong rigidity of locally symmetric spaces G. D. Mostow |
title_fullStr | Strong rigidity of locally symmetric spaces G. D. Mostow |
title_full_unstemmed | Strong rigidity of locally symmetric spaces G. D. Mostow |
title_short | Strong rigidity of locally symmetric spaces |
title_sort | strong rigidity of locally symmetric spaces |
topic | Lie groups Riemannian manifolds Rigidity (Geometry) Symmetric spaces Lokal symmetrischer Raum (DE-588)4168100-9 gnd Rigidität (DE-588)4178149-1 gnd Starrheit Mathematik (DE-588)4326739-7 gnd |
topic_facet | Lie groups Riemannian manifolds Rigidity (Geometry) Symmetric spaces Lokal symmetrischer Raum Rigidität Starrheit Mathematik |
url | https://doi.org/10.1515/9781400881833?locatt=mode:legacy |
volume_link | (DE-604)BV040389493 |
work_keys_str_mv | AT mostowgeorged strongrigidityoflocallysymmetricspaces |