An Introduction to the Statistical Theory of Classical Simple Dense Fluids:
An Introduction to the Statistical Theory of Classical Simple Dense Fluids covers certain aspects of the study of dense fluids, based on the analysis of the correlation effects between representative small groupings of molecules. The book starts by discussing empirical considerations including the p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Elsevier Science
2014
|
Schlagworte: | |
Online-Zugang: | FAW01 |
Zusammenfassung: | An Introduction to the Statistical Theory of Classical Simple Dense Fluids covers certain aspects of the study of dense fluids, based on the analysis of the correlation effects between representative small groupings of molecules. The book starts by discussing empirical considerations including the physical characteristics of fluids; measured molecular spatial distribution; scattering by a continuous medium; the radial distribution function; the mean potential; and the molecular motion in liquids. The text describes the application of the theories to the description of dense fluids (i.e. interparticle force, classical particle trajectories, and the Liouville Theorem) and the deduction of expressions for the fluid thermodynamic functions. The theory of equilibrium short-range order by using the concept of closure approximation or total correlation; some numerical consequences of the equilibrium theory; and irreversibility are also looked into. The book further tackles the kinetic derivation of the Maxwell-Boltzmann (MB) equation; the statistical derivation of the MB equation; the movement to equilibrium; gas in a steady state; and viscosity and thermal conductivity. The text also discusses non-equilibrium liquids. Physicists, chemists, and engineers will find the book invaluable |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 online resource (298 pages) |
ISBN: | 9781483214597 9780080103976 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043608549 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160616s2014 |||| o||u| ||||||eng d | ||
020 | |a 9781483214597 |9 978-1-4832-1459-7 | ||
020 | |a 9780080103976 |c Print |9 978-0-08-010397-6 | ||
035 | |a (ZDB-30-PQE)EBC1661477 | ||
035 | |a (ZDB-89-EBL)EBL1661477 | ||
035 | |a (ZDB-38-EBR)ebr10908014 | ||
035 | |a (OCoLC)880826578 | ||
035 | |a (DE-599)BVBBV043608549 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 532 | |
100 | 1 | |a Cole, G.H.A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
264 | 1 | |a Cambridge |b Elsevier Science |c 2014 | |
264 | 4 | |c © 1967 | |
300 | |a 1 online resource (298 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | |a An Introduction to the Statistical Theory of Classical Simple Dense Fluids covers certain aspects of the study of dense fluids, based on the analysis of the correlation effects between representative small groupings of molecules. The book starts by discussing empirical considerations including the physical characteristics of fluids; measured molecular spatial distribution; scattering by a continuous medium; the radial distribution function; the mean potential; and the molecular motion in liquids. The text describes the application of the theories to the description of dense fluids (i.e. interparticle force, classical particle trajectories, and the Liouville Theorem) and the deduction of expressions for the fluid thermodynamic functions. The theory of equilibrium short-range order by using the concept of closure approximation or total correlation; some numerical consequences of the equilibrium theory; and irreversibility are also looked into. The book further tackles the kinetic derivation of the Maxwell-Boltzmann (MB) equation; the statistical derivation of the MB equation; the movement to equilibrium; gas in a steady state; and viscosity and thermal conductivity. The text also discusses non-equilibrium liquids. Physicists, chemists, and engineers will find the book invaluable | ||
650 | 4 | |a Fluids | |
650 | 4 | |a Molecular theory | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Cole, G |t H.A.. An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
912 | |a ZDB-30-PQE |a ZDB-33-ESD |a ZDB-33-EBS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029022608 | ||
966 | e | |u http://www.sciencedirect.com/science/book/9780080103976 |l FAW01 |p ZDB-33-ESD |q FAW_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176354987474944 |
---|---|
any_adam_object | |
author | Cole, G.H.A |
author_facet | Cole, G.H.A |
author_role | aut |
author_sort | Cole, G.H.A |
author_variant | g c gc |
building | Verbundindex |
bvnumber | BV043608549 |
collection | ZDB-30-PQE ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-30-PQE)EBC1661477 (ZDB-89-EBL)EBL1661477 (ZDB-38-EBR)ebr10908014 (OCoLC)880826578 (DE-599)BVBBV043608549 |
dewey-full | 532 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532 |
dewey-search | 532 |
dewey-sort | 3532 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02741nmm a2200409zc 4500</leader><controlfield tag="001">BV043608549</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160616s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781483214597</subfield><subfield code="9">978-1-4832-1459-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080103976</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-08-010397-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC1661477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL1661477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-38-EBR)ebr10908014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)880826578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043608549</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cole, G.H.A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to the Statistical Theory of Classical Simple Dense Fluids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Elsevier Science</subfield><subfield code="c">2014</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 1967</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (298 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An Introduction to the Statistical Theory of Classical Simple Dense Fluids covers certain aspects of the study of dense fluids, based on the analysis of the correlation effects between representative small groupings of molecules. The book starts by discussing empirical considerations including the physical characteristics of fluids; measured molecular spatial distribution; scattering by a continuous medium; the radial distribution function; the mean potential; and the molecular motion in liquids. The text describes the application of the theories to the description of dense fluids (i.e. interparticle force, classical particle trajectories, and the Liouville Theorem) and the deduction of expressions for the fluid thermodynamic functions. The theory of equilibrium short-range order by using the concept of closure approximation or total correlation; some numerical consequences of the equilibrium theory; and irreversibility are also looked into. The book further tackles the kinetic derivation of the Maxwell-Boltzmann (MB) equation; the statistical derivation of the MB equation; the movement to equilibrium; gas in a steady state; and viscosity and thermal conductivity. The text also discusses non-equilibrium liquids. Physicists, chemists, and engineers will find the book invaluable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular theory</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Cole, G</subfield><subfield code="t">H.A.. An Introduction to the Statistical Theory of Classical Simple Dense Fluids</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029022608</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780080103976</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FAW_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043608549 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:30:51Z |
institution | BVB |
isbn | 9781483214597 9780080103976 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029022608 |
oclc_num | 880826578 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 online resource (298 pages) |
psigel | ZDB-30-PQE ZDB-33-ESD ZDB-33-EBS ZDB-33-ESD FAW_PDA_ESD |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Elsevier Science |
record_format | marc |
spelling | Cole, G.H.A. Verfasser aut An Introduction to the Statistical Theory of Classical Simple Dense Fluids Cambridge Elsevier Science 2014 © 1967 1 online resource (298 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources An Introduction to the Statistical Theory of Classical Simple Dense Fluids covers certain aspects of the study of dense fluids, based on the analysis of the correlation effects between representative small groupings of molecules. The book starts by discussing empirical considerations including the physical characteristics of fluids; measured molecular spatial distribution; scattering by a continuous medium; the radial distribution function; the mean potential; and the molecular motion in liquids. The text describes the application of the theories to the description of dense fluids (i.e. interparticle force, classical particle trajectories, and the Liouville Theorem) and the deduction of expressions for the fluid thermodynamic functions. The theory of equilibrium short-range order by using the concept of closure approximation or total correlation; some numerical consequences of the equilibrium theory; and irreversibility are also looked into. The book further tackles the kinetic derivation of the Maxwell-Boltzmann (MB) equation; the statistical derivation of the MB equation; the movement to equilibrium; gas in a steady state; and viscosity and thermal conductivity. The text also discusses non-equilibrium liquids. Physicists, chemists, and engineers will find the book invaluable Fluids Molecular theory Erscheint auch als Druck-Ausgabe Cole, G H.A.. An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
spellingShingle | Cole, G.H.A An Introduction to the Statistical Theory of Classical Simple Dense Fluids Fluids Molecular theory |
title | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_auth | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_exact_search | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_full | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_fullStr | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_full_unstemmed | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_short | An Introduction to the Statistical Theory of Classical Simple Dense Fluids |
title_sort | an introduction to the statistical theory of classical simple dense fluids |
topic | Fluids Molecular theory |
topic_facet | Fluids Molecular theory |
work_keys_str_mv | AT colegha anintroductiontothestatisticaltheoryofclassicalsimpledensefluids |