The spectrum of hyperbolic surfaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2016]
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext Abstract Inhaltsverzeichnis |
Beschreibung: | 1 Online Ressource (XIII, 370 Seiten, 8 illus. in color) |
ISBN: | 9783319276663 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-319-27666-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043423060 | ||
003 | DE-604 | ||
005 | 20220315 | ||
007 | cr|uuu---uuuuu | ||
008 | 160302s2016 |||| o||u| ||||||eng d | ||
020 | |a 9783319276663 |c Online |9 978-3-319-27666-3 | ||
024 | 7 | |a 10.1007/978-3-319-27666-3 |2 doi | |
035 | |a (OCoLC)943811174 | ||
035 | |a (DE-599)BVBBV043423060 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-898 |a DE-703 |a DE-861 |a DE-824 |a DE-83 | ||
082 | 0 | |a 516.9 |2 23 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bergeron, Nicolas |d 1975-2024 |e Verfasser |0 (DE-588)133056996 |4 aut | |
245 | 1 | 0 | |a The spectrum of hyperbolic surfaces |c Nicolas Bergeron |
264 | 1 | |a Cham |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a 1 Online Ressource (XIII, 370 Seiten, 8 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Ergodic theory | |
650 | 4 | |a Hyperbolic geometry | |
650 | 4 | |a Hyperbolic Geometry | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Mathematik | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-27664-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-27666-3 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028840952 | ||
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-27666-3 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176018147115008 |
---|---|
adam_text | THE SPECTRUM OF HYPERBOLIC SURFACES
/ BERGERON, NICOLAS
: 2016
ABSTRACT / INHALTSTEXT
THIS TEXT IS AN INTRODUCTION TO THE SPECTRAL THEORY OF THE LAPLACIAN ON
COMPACT OR FINITE AREA HYPERBOLIC SURFACES. FOR SOME OF THESE SURFACES,
CALLED “ARITHMETIC HYPERBOLIC SURFACES”, THE EIGENFUNCTIONS ARE OF
ARITHMETIC NATURE, AND ONE MAY USE ANALYTIC TOOLS AS WELL AS POWERFUL
METHODS IN NUMBER THEORY TO STUDY THEM. AFTER AN INTRODUCTION TO THE
HYPERBOLIC GEOMETRY OF SURFACES, WITH A SPECIAL EMPHASIS ON THOSE OF
ARITHMETIC TYPE, AND THEN AN INTRODUCTION TO SPECTRAL ANALYTIC METHODS
ON THE LAPLACE OPERATOR ON THESE SURFACES, THE AUTHOR DEVELOPS THE
ANALOGY BETWEEN GEOMETRY (CLOSED GEODESICS) AND ARITHMETIC (PRIME
NUMBERS) IN PROVING THE SELBERG TRACE FORMULA. ALONG WITH IMPORTANT
NUMBER THEORETIC APPLICATIONS, THE AUTHOR EXHIBITS APPLICATIONS OF THESE
TOOLS TO THE SPECTRAL STATISTICS OF THE LAPLACIAN AND THE QUANTUM UNIQUE
ERGODICITY PROPERTY. THE LATTER REFERS TO THE ARITHMETIC QUANTUM UNIQUE
ERGODICITY THEOREM, RECENTLY PROVED BY ELON LINDENSTRAUSS. THE FRUIT OF
SEVERAL GRADUATE LEVEL COURSES AT ORSAY AND JUSSIEU, THE SPECTRUM OF
HYPERBOLIC SURFACES ALLOWS THE READER TO REVIEW AN ARRAY OF CLASSICAL
RESULTS AND THEN TO BE LED TOWARDS VERY ACTIVE AREAS IN MODERN
MATHEMATICS
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
THE SPECTRUM OF HYPERBOLIC SURFACES
/ BERGERON, NICOLAS
: 2016
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE
INTRODUCTION
ARITHMETIC HYPERBOLIC SURFACES
SPECTRAL DECOMPOSITION
MAASS FORMS
THE TRACE FORMULA
MULTIPLICITY OF LAMBDA1 AND THE SELBERG CONJECTURE
L-FUNCTIONS AND THE SELBERG CONJECTURE
JACQUET-LANGLANDS CORRESPONDENCE
ARITHMETIC QUANTUM UNIQUE ERGODICITY
APPENDICES
REFERENCES
INDEX OF NOTATION
INDEX
INDEX OF NAMES
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Bergeron, Nicolas 1975-2024 |
author_GND | (DE-588)133056996 |
author_facet | Bergeron, Nicolas 1975-2024 |
author_role | aut |
author_sort | Bergeron, Nicolas 1975-2024 |
author_variant | n b nb |
building | Verbundindex |
bvnumber | BV043423060 |
classification_rvk | SK 750 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)943811174 (DE-599)BVBBV043423060 |
dewey-full | 516.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.9 |
dewey-search | 516.9 |
dewey-sort | 3516.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-27666-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02963nmm a2200625zc 4500</leader><controlfield tag="001">BV043423060</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160302s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319276663</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-27666-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-27666-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)943811174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043423060</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bergeron, Nicolas</subfield><subfield code="d">1975-2024</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133056996</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The spectrum of hyperbolic surfaces</subfield><subfield code="c">Nicolas Bergeron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (XIII, 370 Seiten, 8 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-27664-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028840952</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-27666-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043423060 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:25:30Z |
institution | BVB |
isbn | 9783319276663 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028840952 |
oclc_num | 943811174 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-703 DE-861 DE-824 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-703 DE-861 DE-824 DE-83 |
physical | 1 Online Ressource (XIII, 370 Seiten, 8 illus. in color) |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Bergeron, Nicolas 1975-2024 Verfasser (DE-588)133056996 aut The spectrum of hyperbolic surfaces Nicolas Bergeron Cham Springer [2016] © 2016 1 Online Ressource (XIII, 370 Seiten, 8 illus. in color) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Mathematics Harmonic analysis Dynamics Ergodic theory Hyperbolic geometry Hyperbolic Geometry Abstract Harmonic Analysis Dynamical Systems and Ergodic Theory Mathematik Erscheint auch als Druckausgabe 978-3-319-27664-9 https://doi.org/10.1007/978-3-319-27666-3 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Abstract Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bergeron, Nicolas 1975-2024 The spectrum of hyperbolic surfaces Mathematics Harmonic analysis Dynamics Ergodic theory Hyperbolic geometry Hyperbolic Geometry Abstract Harmonic Analysis Dynamical Systems and Ergodic Theory Mathematik |
title | The spectrum of hyperbolic surfaces |
title_auth | The spectrum of hyperbolic surfaces |
title_exact_search | The spectrum of hyperbolic surfaces |
title_full | The spectrum of hyperbolic surfaces Nicolas Bergeron |
title_fullStr | The spectrum of hyperbolic surfaces Nicolas Bergeron |
title_full_unstemmed | The spectrum of hyperbolic surfaces Nicolas Bergeron |
title_short | The spectrum of hyperbolic surfaces |
title_sort | the spectrum of hyperbolic surfaces |
topic | Mathematics Harmonic analysis Dynamics Ergodic theory Hyperbolic geometry Hyperbolic Geometry Abstract Harmonic Analysis Dynamical Systems and Ergodic Theory Mathematik |
topic_facet | Mathematics Harmonic analysis Dynamics Ergodic theory Hyperbolic geometry Hyperbolic Geometry Abstract Harmonic Analysis Dynamical Systems and Ergodic Theory Mathematik |
url | https://doi.org/10.1007/978-3-319-27666-3 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028840952&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bergeronnicolas thespectrumofhyperbolicsurfaces |