Differential forms in electromagnetics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Piscataway, NJ
IEEE Press
©2004
|
Schriftenreihe: | IEEE Press series on electromagnetic wave theory
|
Schlagworte: | |
Online-Zugang: | FRO01 UBG01 FHI01 FHN01 URL des Erstveröffentlichers |
Beschreibung: | Includes bibliographical references (pages 213-218) and index An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials |
Beschreibung: | 1 Online-Ressource (xiv, 253 pages) |
ISBN: | 9780471723097 0471723096 0471648019 9780471648017 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043385627 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 160222s2004 |||| o||u| ||||||eng d | ||
015 | |a GBA4Z4152 |2 dnb | ||
020 | |a 9780471723097 |c electronic bk. |9 978-0-471-72309-7 | ||
020 | |a 0471723096 |c electronic bk. |9 0-471-72309-6 | ||
020 | |a 0471648019 |9 0-471-64801-9 | ||
020 | |a 9780471648017 |9 978-0-471-64801-7 | ||
020 | |a 9780471648017 |c print. ed. |9 978-0-471-64801-7 | ||
020 | |a 0471648019 |c print. ed. |9 0-471-64801-9 | ||
024 | 7 | |a 10.1002/0471723096 |2 doi | |
024 | 3 | |a 9780471648017 | |
035 | |a (ZDB-35-WIC)ocm85820391 | ||
035 | |a (OCoLC)85820391 | ||
035 | |a (DE-599)BVBBV043385627 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-861 |a DE-573 |a DE-92 | ||
082 | 0 | |a 537/.0151 |2 22 | |
100 | 1 | |a Lindell, Ismo V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Differential forms in electromagnetics |c Ismo V. Lindell |
264 | 1 | |a Piscataway, NJ |b IEEE Press |c ©2004 | |
300 | |a 1 Online-Ressource (xiv, 253 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a IEEE Press series on electromagnetic wave theory | |
500 | |a Includes bibliographical references (pages 213-218) and index | ||
500 | |a An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials | ||
650 | 4 | |a Electrical and Electronics Engineering | |
650 | 7 | |a Electromagnetism / Mathematics |2 fast | |
650 | 7 | |a Differential forms |2 fast | |
650 | 7 | |a Eletromagnetismo |2 larpcal | |
650 | 7 | |a Formas diferenciais |2 larpcal | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Electromagnetism / Mathematics | |
650 | 4 | |a Differential forms | |
650 | 0 | 7 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialform |0 (DE-588)4149772-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |D s |
689 | 0 | 1 | |a Differentialform |0 (DE-588)4149772-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-35-WIC |a ZDB-35-WEL | ||
940 | 1 | |q UBG_PDA_WIC | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028804211 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096 |l FRO01 |p ZDB-35-WIC |q FRO_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096 |l UBG01 |p ZDB-35-WIC |q UBG_PDA_WIC |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237463 |l FHI01 |p ZDB-35-WEL |x Aggregator |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237463 |l FHN01 |p ZDB-35-WEL |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175954131550208 |
---|---|
any_adam_object | |
author | Lindell, Ismo V. |
author_facet | Lindell, Ismo V. |
author_role | aut |
author_sort | Lindell, Ismo V. |
author_variant | i v l iv ivl |
building | Verbundindex |
bvnumber | BV043385627 |
collection | ZDB-35-WIC ZDB-35-WEL |
ctrlnum | (ZDB-35-WIC)ocm85820391 (OCoLC)85820391 (DE-599)BVBBV043385627 |
dewey-full | 537/.0151 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537/.0151 |
dewey-search | 537/.0151 |
dewey-sort | 3537 3151 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04158nmm a2200661zc 4500</leader><controlfield tag="001">BV043385627</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160222s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA4Z4152</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471723097</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-471-72309-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471723096</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-471-72309-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471648019</subfield><subfield code="9">0-471-64801-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471648017</subfield><subfield code="9">978-0-471-64801-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471648017</subfield><subfield code="c">print. ed.</subfield><subfield code="9">978-0-471-64801-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471648019</subfield><subfield code="c">print. ed.</subfield><subfield code="9">0-471-64801-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/0471723096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780471648017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-35-WIC)ocm85820391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)85820391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043385627</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-861</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">537/.0151</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindell, Ismo V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential forms in electromagnetics</subfield><subfield code="c">Ismo V. Lindell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Piscataway, NJ</subfield><subfield code="b">IEEE Press</subfield><subfield code="c">©2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 253 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">IEEE Press series on electromagnetic wave theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 213-218) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical and Electronics Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electromagnetism / Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential forms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eletromagnetismo</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formas diferenciais</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential forms</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-35-WIC</subfield><subfield code="a">ZDB-35-WEL</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBG_PDA_WIC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028804211</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">FRO_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-35-WIC</subfield><subfield code="q">UBG_PDA_WIC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237463</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5237463</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-35-WEL</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043385627 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:24:29Z |
institution | BVB |
isbn | 9780471723097 0471723096 0471648019 9780471648017 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028804211 |
oclc_num | 85820391 |
open_access_boolean | |
owner | DE-861 DE-573 DE-92 |
owner_facet | DE-861 DE-573 DE-92 |
physical | 1 Online-Ressource (xiv, 253 pages) |
psigel | ZDB-35-WIC ZDB-35-WEL UBG_PDA_WIC ZDB-35-WIC FRO_PDA_WIC ZDB-35-WIC UBG_PDA_WIC |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | IEEE Press |
record_format | marc |
series2 | IEEE Press series on electromagnetic wave theory |
spelling | Lindell, Ismo V. Verfasser aut Differential forms in electromagnetics Ismo V. Lindell Piscataway, NJ IEEE Press ©2004 1 Online-Ressource (xiv, 253 pages) txt rdacontent c rdamedia cr rdacarrier IEEE Press series on electromagnetic wave theory Includes bibliographical references (pages 213-218) and index An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials Electrical and Electronics Engineering Electromagnetism / Mathematics fast Differential forms fast Eletromagnetismo larpcal Formas diferenciais larpcal Mathematik Electromagnetism / Mathematics Differential forms Elektromagnetisches Feld (DE-588)4014305-3 gnd rswk-swf Differentialform (DE-588)4149772-7 gnd rswk-swf Elektromagnetisches Feld (DE-588)4014305-3 s Differentialform (DE-588)4149772-7 s 1\p DE-604 https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lindell, Ismo V. Differential forms in electromagnetics Electrical and Electronics Engineering Electromagnetism / Mathematics fast Differential forms fast Eletromagnetismo larpcal Formas diferenciais larpcal Mathematik Electromagnetism / Mathematics Differential forms Elektromagnetisches Feld (DE-588)4014305-3 gnd Differentialform (DE-588)4149772-7 gnd |
subject_GND | (DE-588)4014305-3 (DE-588)4149772-7 |
title | Differential forms in electromagnetics |
title_auth | Differential forms in electromagnetics |
title_exact_search | Differential forms in electromagnetics |
title_full | Differential forms in electromagnetics Ismo V. Lindell |
title_fullStr | Differential forms in electromagnetics Ismo V. Lindell |
title_full_unstemmed | Differential forms in electromagnetics Ismo V. Lindell |
title_short | Differential forms in electromagnetics |
title_sort | differential forms in electromagnetics |
topic | Electrical and Electronics Engineering Electromagnetism / Mathematics fast Differential forms fast Eletromagnetismo larpcal Formas diferenciais larpcal Mathematik Electromagnetism / Mathematics Differential forms Elektromagnetisches Feld (DE-588)4014305-3 gnd Differentialform (DE-588)4149772-7 gnd |
topic_facet | Electrical and Electronics Engineering Electromagnetism / Mathematics Differential forms Eletromagnetismo Formas diferenciais Mathematik Elektromagnetisches Feld Differentialform |
url | https://onlinelibrary.wiley.com/doi/book/10.1002/0471723096 |
work_keys_str_mv | AT lindellismov differentialformsinelectromagnetics |