Operator theoretic aspects of ergodic theory:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2015
|
Schriftenreihe: | Graduate texts in mathematics
272 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 577 - 611 |
Beschreibung: | XVIII, 628 S. Ill. |
ISBN: | 9783319168975 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043193663 | ||
003 | DE-604 | ||
005 | 20161013 | ||
007 | t | ||
008 | 151208s2015 a||| |||| 00||| eng d | ||
020 | |a 9783319168975 |9 978-3-319-16897-5 | ||
035 | |a (OCoLC)934133519 | ||
035 | |a (DE-599)GBV840599730 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-83 |a DE-824 |a DE-188 |a DE-19 |a DE-355 |a DE-29T |a DE-739 | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a 37A30 |2 msc | ||
084 | |a 46B42 |2 msc | ||
100 | 1 | |a Eisner, Tatjana |d 1980- |e Verfasser |0 (DE-588)133328031 |4 aut | |
245 | 1 | 0 | |a Operator theoretic aspects of ergodic theory |c Tanja Eisner ; Bálint Farkas ; Markus Haase ; Rainer Nagel |
264 | 1 | |a Cham [u.a.] |b Springer |c 2015 | |
300 | |a XVIII, 628 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 272 | |
500 | |a Literaturverz. S. 577 - 611 | ||
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ergodentheorie |0 (DE-588)4015246-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ergodentheorie |0 (DE-588)4015246-7 |D s |
689 | 0 | 1 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Farkas, Balint |e Verfasser |4 aut | |
700 | 1 | |a Haase, Markus |d 1970- |e Verfasser |0 (DE-588)1060737418 |4 aut | |
700 | 1 | |a Nagel, Rainer |d 1940- |e Verfasser |0 (DE-588)141517956 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-16898-2 |
830 | 0 | |a Graduate texts in mathematics |v 272 |w (DE-604)BV000000067 |9 272 | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028617230&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028617230 |
Datensatz im Suchindex
_version_ | 1804175684126375936 |
---|---|
adam_text | Contents Preface.................................................................................................................... vii 1 What Is Ergodic Theory?............................................................................ Exercises ........................................................................................................ 1 6 2 Topological Dynamical Systems................................................................. 2.1 Basic Examples................................................................................... 2.2 Basic Constructions............................................................................. 2.3 Topological Transitivity..................................................................... 2.4 Transitivity of Subshifts..................................................................... Exercises........................................................................................................ 9 10 15 22 26 29 3 Minimality and Recurrence....................................................................... 3.1 Minimality ........................................................................................... 3.2 Topological Recurrence ..................................................................... 3.3 Recurrence in Extensions.................................................................... Exercises........................................................................................................ 33 34 36 39 42 4 The C*-Algebra C(Æ) and the KoopmanOperator................................. 4.1
Continuous Functions on CompactSpaces....................................... 4.2 The Space C(K) as a Commutative C*-Algebra.............................. 4.3 The Koopman Operator...................................................................... 4.4 The Gelfand-Naimark Theorem....................................................... Supplement: Proof of the Gelfand-Naimark Theorem.............................. Exercises........................................................................................................ 45 46 51 54 59 60 68 5 Measure-Preserving Systems...................................................................... 5.1 Examples............................................................................................. 5.2 Measures on Compact Spaces............................................................ 5.3 Haar Measures and Rotations............................................................ Supplement: Haar Measures on Homogeneous Spaces............................. Exercises........................................................................................................ 71 73 79 84 87 90 XV
xvi 6 Contents Recurrence and Ergodicity........................................................................... 6.1 The Measure Algebra and Invertible Systems................................... 6.2 Recurrence............................................................................................ 6.3 Ergodicity............................................................................................. Supplement: Induced Transformation and the Kakutani-Rokhlin Lemma..................................................... 107 Exercises........................................................................................................ 7 The Banach Lattice Մ and the Koopman Operator................................ 7.1 Banach Lattices and Positive Operators............................................ 7.2 The Space L(X) as a Banach Lattice................................................. 7.3 The Koopman Operator and Ergodicity.............................................. Supplement: Interplay Between Lattice and Algebra Structure............... Exercises ........................................................................................................ 8 The Mean Ergodic Theorem.......................................................................... 8.1 Von Neumann’s Mean Ergodic Theorem........................................... 8.2 The Fixed Space and Ergodicity......................................................... 8.3 Perron’s Theorem and the Ergodicity of Markov Shifts.................. 8.4 Mean Ergodic
Operators..................................................................... 8.5 Operations with Mean Ergodic Operators......................................... Supplement: Mean Ergodic Operator Semigroups..................................... Exercises........................................................................................................ 9 Mixing Dynamical Systems............................................................................. 9.1 Strong Mixing....................................................................................... 9.2 Weak Mixing........................................................................................ 9.3 More Characterizations of Weakly Mixing Systems......................... 9.4 Weak Mixing of All Orders................................................................ Exercises........................................................................................................ 95 95 99 104 110 115 117 122 124 129 132 135 136 140 143 145 150 152 158 161 162 172 179 182 187 191 10.1 Invariant Measures.............................................................................. 192 10.2 Uniquely and Strictly Ergodic Systems.............................................. 194 10.3 Mean Ergodicity of Group Rotations................................................ 197 10.4 Furstenberg’s Theorem on Group Extensions.................................. 199 10.5 Application: Equidistribution ............................................................ 203 Exercises
........................................................................................................ 206 10 Mean Ergodic Operators on C(K)................................................................ 11 The Pointwise Ergodic Theorem................................................................... 11.1 Pointwise Ergodic Operators............................................................. 11.2 Banach’s Principle and Maximal Inequalities................................... 11.3 Applications......................................................................................... Exercises........................................................................................................ 211 212 214 218 222 225 12.1 Point Isomorphisms and Factor Maps.............................................. 226 12.2 Algebra Isomorphisms of Measure-Preserving Systems................. 230 12.3 Abstract Systems and Topological Models....................................... 235 12 Isomorphisms and Topological Models ......................................................
Contents xvii 12.4 The Stone Representation.................................................................. 240 12.5 Mean Ergodicity on Subalgebras....................................................... 242 Exercises........................................................................................................ 245 13 Markov Operators...................................................................................... 13.1 Examples and Basic Properties.......................................................... 13.2 Embeddings, Factor Maps and Isomorphisms.................................. 13.3 Markov Projections............................................................................ 13.4 Factors and Topological Models....................................................... 13.5 Inductive Limits and the Invertible Extension.................................. Exercises........................................................................................................ 249 250 254 257 262 265 271 14 Compact Groups ........................................................................................ 14.1 Compact Groups and the Haar Measure........................................... 14.2 The Character Group......................................................................... 14.3 The Pontryagin Duality Theorem..................................................... 14.4 Monothetic Groups and Ergodic Rotations...................................... Supplement: Characters of Discrete Abelian Groups................................
Exercises........................................................................................................ 273 273 276 279 283 287 288 15 Group Actions and Representations ...................................................... 15.1 Continuous Representations on BanachSpaces.............................. 15.2 Unitary Representations................................................................... 15.3 Compact Group Actions................................................................... 15.4 Markov Representations................................................................... Supplement: Abstract Compact Group Extensions.................................... Exercises........................................................................................................ 291 292 297 303 306 308 312 16 The Jacobs-de Leeuw-Glicksberg Decomposition.............................. 16.1 Compact Semigroups......................................................................... 16.2 Weakly Compact Operator Semigroups......................................... 16.3 The Jacobs-de Leeuw-Glicksberg Decomposition......................... 16.4 Cyclic Semigroups of Operators...................................................... Exercises........................................................................................................ 317 317 323 329 336 341 17 The Kronecker Factor and Systems with Discrete Spectrum .............................................................................................. 345 17.1 Semigroups of Markov Operators and the Kronecker
Factor........ 17.2 Dynamical Systems with Discrete Spectrum................................... 17.3 Disjointness of Weak Mixing and Discrete Spectrum..................... 17.4 Examples............................................................................................. Exercises........................................................................................................ 345 349 353 355 363 The Spectral Theorem and Dynamical Systems .................................. 18.1 The Spectral Theorem........................................................................ 18.2 Spectral Decompositions and the Maximal Spectral Type.............. 18.3 Discrete Measures and Eigenvalues.................................................. 18.4 Dynamical Systems............................................................................ Exercises ........................................................................................................ 367 367 376 381 386 398 18
Contents xviii 19 Topological Dynamics and Colorings........................................................... 19.1 The Stone-Čech Compactification.................................................... 19.2 The Semigroup Structure on ß5........................................................ 19.3 Topological Dynamics Revisited....................................................... 19.4 Hindman’s Theorem........................................................................... 19.5 From Coloring to Recurrence Results .............................................. 19.6 From Recurrence to Coloring Results ............................................. Exercises........................................................................................................ 20 Arithmetic Progressions and Ergodic Theory ......................................... 20.1 From Ergodic Theory to Arithmetic Progressions......................... 20.2 Back from Arithmetic Progressions to Ergodic Theory................. 20.3 The Host-Kra Theorem.................................................................... 20.4 Furstenberg’s Multiple Recurrence Theorem.................................. 20.5 The Furstenberg-Sárközy Theorem.................................................. Exercises........................................................................................................ 405 406 409 412 416 419 424 429 433 434 437 444 451 455 457 21.1 Weighted Ergodic Theorems............................................................. 21.2 Wiener-Wintner and Return Time Theorems
.................................. 21.3 Linear Sequences as Good Weights................................................... 21.4 Subsequential Ergodic Theorems...................................................... 21.5 Even More Ergodic Theorems.......................................................... Exercises........................................................................................................ 461 461 464 469 470 474 476 A Topology.............................................................................................................. 479 В Measure and Integration Theory.................................................................. 491 C Functional Analysis......................................................................................... D Operator Theory on Hilbert Spaces............................................................. 521 E The Riesz Representation Theorem............................................................. F Standard Probability Spaces.......................................................................... 557 21 More Ergodic Theorems .............................................................................. 507 543 G Theorems of Eberlein, Grothendieck, and Ellis........................................ 563 Bibliography.............................................................................................................. 577 Index............................................................................................................................ 613 Symbol
Index.......................................................................... 625
|
any_adam_object | 1 |
author | Eisner, Tatjana 1980- Farkas, Balint Haase, Markus 1970- Nagel, Rainer 1940- |
author_GND | (DE-588)133328031 (DE-588)1060737418 (DE-588)141517956 |
author_facet | Eisner, Tatjana 1980- Farkas, Balint Haase, Markus 1970- Nagel, Rainer 1940- |
author_role | aut aut aut aut |
author_sort | Eisner, Tatjana 1980- |
author_variant | t e te b f bf m h mh r n rn |
building | Verbundindex |
bvnumber | BV043193663 |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)934133519 (DE-599)GBV840599730 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01902nam a2200445 cb4500</leader><controlfield tag="001">BV043193663</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161013 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">151208s2015 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319168975</subfield><subfield code="9">978-3-319-16897-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)934133519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV840599730</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">37A30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">46B42</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eisner, Tatjana</subfield><subfield code="d">1980-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133328031</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operator theoretic aspects of ergodic theory</subfield><subfield code="c">Tanja Eisner ; Bálint Farkas ; Markus Haase ; Rainer Nagel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 628 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">272</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 577 - 611</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ergodentheorie</subfield><subfield code="0">(DE-588)4015246-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farkas, Balint</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haase, Markus</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1060737418</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagel, Rainer</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141517956</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-16898-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">272</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">272</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028617230&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028617230</subfield></datafield></record></collection> |
id | DE-604.BV043193663 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:20:12Z |
institution | BVB |
isbn | 9783319168975 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028617230 |
oclc_num | 934133519 |
open_access_boolean | |
owner | DE-11 DE-83 DE-824 DE-188 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-29T DE-739 |
owner_facet | DE-11 DE-83 DE-824 DE-188 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-29T DE-739 |
physical | XVIII, 628 S. Ill. |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Eisner, Tatjana 1980- Verfasser (DE-588)133328031 aut Operator theoretic aspects of ergodic theory Tanja Eisner ; Bálint Farkas ; Markus Haase ; Rainer Nagel Cham [u.a.] Springer 2015 XVIII, 628 S. Ill. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 272 Literaturverz. S. 577 - 611 Operatortheorie (DE-588)4075665-8 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 gnd rswk-swf Ergodentheorie (DE-588)4015246-7 s Operatortheorie (DE-588)4075665-8 s DE-604 Farkas, Balint Verfasser aut Haase, Markus 1970- Verfasser (DE-588)1060737418 aut Nagel, Rainer 1940- Verfasser (DE-588)141517956 aut Erscheint auch als Online-Ausgabe 978-3-319-16898-2 Graduate texts in mathematics 272 (DE-604)BV000000067 272 Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028617230&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Eisner, Tatjana 1980- Farkas, Balint Haase, Markus 1970- Nagel, Rainer 1940- Operator theoretic aspects of ergodic theory Graduate texts in mathematics Operatortheorie (DE-588)4075665-8 gnd Ergodentheorie (DE-588)4015246-7 gnd |
subject_GND | (DE-588)4075665-8 (DE-588)4015246-7 |
title | Operator theoretic aspects of ergodic theory |
title_auth | Operator theoretic aspects of ergodic theory |
title_exact_search | Operator theoretic aspects of ergodic theory |
title_full | Operator theoretic aspects of ergodic theory Tanja Eisner ; Bálint Farkas ; Markus Haase ; Rainer Nagel |
title_fullStr | Operator theoretic aspects of ergodic theory Tanja Eisner ; Bálint Farkas ; Markus Haase ; Rainer Nagel |
title_full_unstemmed | Operator theoretic aspects of ergodic theory Tanja Eisner ; Bálint Farkas ; Markus Haase ; Rainer Nagel |
title_short | Operator theoretic aspects of ergodic theory |
title_sort | operator theoretic aspects of ergodic theory |
topic | Operatortheorie (DE-588)4075665-8 gnd Ergodentheorie (DE-588)4015246-7 gnd |
topic_facet | Operatortheorie Ergodentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028617230&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT eisnertatjana operatortheoreticaspectsofergodictheory AT farkasbalint operatortheoreticaspectsofergodictheory AT haasemarkus operatortheoreticaspectsofergodictheory AT nagelrainer operatortheoreticaspectsofergodictheory |