High-speed penetration dynamics: engineering models and methods
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ben-Dôr, Gabbi 1950- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Publishing Company 2013
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Beschreibung:3.29.2 Evaluation of the performance of models. Finite width shield
Preface; Contents; Part 1 Some Conventional Approaches to Penetration Modeling; Chapter 1 Localized Interaction Models (LIMs); 1.1 Basics of the Localized Interaction Theory; 1.2 Impactor-Shield Interaction Surface; 1.2.1 Semi-infinite shield; 1.2.2 Shield having a finite thickness; 1.3 General Relationships for 3-D Impactors; 1.3.1 Drag force. Equation of motion; 1.3.2 Residual and ballistic limit velocities. Depth of penetration; 1.3.3 Impactor Having a Shape of Body of Revolution; 1.3.3.1 General formulas; 1.3.3.2 Cone-nosed impactor. Finite thickness shield
1.4 Projectiles Having a Shape of Bodies of Revolution. Two-Term Models1.4.1 Arbitrary body of revolution; 1.4.2 Sharp conical-shaped impactor; 1.4.2.1 General equations; 1.4.2.2 Semi-infinite shield; 1.4.2.3 Shield having a finite thickness; 1.5 Averaged LIMs. General Approach; 1.5.1 Introduction; 1.5.2 Shield having a finite thickness; 1.5.3 Semi-infinite shield; 1.6 Averaged Two-Term Models; 1.6.1 General two-term model; 1.6.2 Shield having a finite thickness; 1.6.2.1 General two-term model; 1.6.2.2 Sub-model n (U, V) = w(U)V2+a0; 1.6.2.3 Sub-model n (U, V) = a2U2V2+ao
1.6.2.4 Sub-model n(U, V)= a2[U2/(1-U2)]V2+a01.6.3 Semi-infinite shield; 1.6.4 Ogive-shaped impactors; 1.6.4.1 Description of the ogive shape; 1.6.4.2 Sub-model n(u, v)=a2u2v2+a0,ufr=o; 1.6.4.3 Sub-model n(u, v)=a2[u2/(1-uz)]v2+a0,ufr=0; 1.6.5 Summary of two-term models; 1.7 Averaged Three-Term Model; 1.8 Oversimplified models; Chapter 2 Cavity Expansion Approximations; 2.1 Introduction; 2.2 Spherical Cavity Expansion Approximation; 2.3 Cylindrical Cavity Expansion Approximation; 2.4 Cavity Expansion Approximations and LIMs; Part 2 Penetration into Concrete Shields
Chapter 3 Empirical models3.1 Introduction; 3.2 Unified Approach; 3.3 Modified Petry Formulas; 3.4 Ballistic Research Laboratory (BRL) Formulas; 3.5 Whiffen Formula; 3.6 Army Corporations of Engineers (ACE) Formula; 3.7 Ammann and Whitney formula; 3.8 Modified National Defense Research Committee (NDRC) Formula; 3.9 Kar Formula; 3.10 Healey-Weissman Formula; 3.11 Bechtel formula; 3.12 Stone and Webster Formula; 3.13 CEA-EDF Formula; 3.14 Degen Formula; 3.15 Chang formula; 3.16 Haldar-Miller Formula; 3.17 Haldar-Hamieh-Miller Formula; 3.18 Hughes' Formula; 3.19 Adeli-Amin Formula
3.20 CRIEPI Formula3.21 Vretblad (British) formula; 3.22 UKAEA-CEBG-NNC Formulas; 3.23 Young Formula; 3.23.1 Original model; 3.23.2 Modifications of the models; 3.23.2.1 First modification; 3.23.2.2 Second modification; 3.24 UMIST Formulas; 3.24.1 Penetration model; 3.24.2 Perforation and scabbing model and its analysis; 3.25 Malaysia-UTHM Models; 3.26 TM 5-855-1 Formulas; 3.27 Folsom Model for Penetration into a Shield with a Predrilled Hole; 3.28 Some Other Models and Related Problems; 3.29 Comparison Between the Models and Their Experimental Validation; 3.29.1 Brief review
This important monograph is the first comprehensive compendium of engineering models used in high-speed penetration mechanics. The book consists of two parts. The first part (more than a quarter of the book's content) is in fact a handbook giving a very detailed summary of the engineering models used for the analysis of high-speed penetration of rigid projectiles into various media (concrete, metals, geological media). The second part of the book demonstrates the possibilities and efficiency of using approximate models for investigating traditional and nontraditional problems of penetration mechanics
Includes bibliographical references
Beschreibung:1 Online-Ressource (697 pages)
ISBN:9789814439053
9814439053

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen