Introduction to operator space theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, U.K.
Cambridge University Press
2003
|
Schriftenreihe: | London Mathematical Society lecture note series
294 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. [457]-475) and indexes Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer |
Beschreibung: | 1 Online-Ressource (vii, 478 p.) |
ISBN: | 0511064519 0511205562 0521811651 1107360234 9780511064517 9780511205569 9780521811651 9781107360235 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043148041 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2003 |||| o||u| ||||||eng d | ||
020 | |a 0511064519 |c electronic bk. |9 0-511-06451-9 | ||
020 | |a 0511205562 |c ebook |9 0-511-20556-2 | ||
020 | |a 0521811651 |9 0-521-81165-1 | ||
020 | |a 1107360234 |c electronic bk. |9 1-107-36023-4 | ||
020 | |a 9780511064517 |c electronic bk. |9 978-0-511-06451-7 | ||
020 | |a 9780511205569 |c ebook |9 978-0-511-20556-9 | ||
020 | |a 9780521811651 |9 978-0-521-81165-1 | ||
020 | |a 9781107360235 |c electronic bk. |9 978-1-107-36023-5 | ||
035 | |a (OCoLC)856017727 | ||
035 | |a (DE-599)BVBBV043148041 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.732 |2 22 | |
100 | 1 | |a Pisier, Gilles |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to operator space theory |c Gilles Pisier |
264 | 1 | |a Cambridge, U.K. |b Cambridge University Press |c 2003 | |
300 | |a 1 Online-Ressource (vii, 478 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 294 | |
500 | |a Includes bibliographical references (p. [457]-475) and indexes | ||
500 | |a Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises | ||
500 | |a The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer | ||
650 | 4 | |a Espaces d'opérateurs | |
650 | 7 | |a Funktionalanalysis |2 swd | |
650 | 7 | |a Operatorraum |2 swd | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Operator spaces |2 local | |
650 | 4 | |a Operator spaces | |
650 | 0 | 7 | |a Operatorraum |0 (DE-588)4591231-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatorraum |0 (DE-588)4591231-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028572232 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175604406288384 |
---|---|
any_adam_object | |
author | Pisier, Gilles |
author_facet | Pisier, Gilles |
author_role | aut |
author_sort | Pisier, Gilles |
author_variant | g p gp |
building | Verbundindex |
bvnumber | BV043148041 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)856017727 (DE-599)BVBBV043148041 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04373nmm a2200577zcb4500</leader><controlfield tag="001">BV043148041</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511064519</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-511-06451-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511205562</subfield><subfield code="c">ebook</subfield><subfield code="9">0-511-20556-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521811651</subfield><subfield code="9">0-521-81165-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360234</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36023-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511064517</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-511-06451-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511205569</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-511-20556-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521811651</subfield><subfield code="9">978-0-521-81165-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360235</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36023-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)856017727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043148041</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pisier, Gilles</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to operator space theory</subfield><subfield code="c">Gilles Pisier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, U.K.</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 478 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">294</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [457]-475) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces d'opérateurs</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operatorraum</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator spaces</subfield><subfield code="2">local</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatorraum</subfield><subfield code="0">(DE-588)4591231-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatorraum</subfield><subfield code="0">(DE-588)4591231-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028572232</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043148041 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:56Z |
institution | BVB |
isbn | 0511064519 0511205562 0521811651 1107360234 9780511064517 9780511205569 9780521811651 9781107360235 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028572232 |
oclc_num | 856017727 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 478 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Pisier, Gilles Verfasser aut Introduction to operator space theory Gilles Pisier Cambridge, U.K. Cambridge University Press 2003 1 Online-Ressource (vii, 478 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 294 Includes bibliographical references (p. [457]-475) and indexes Introduction to Operator Spaces -- Completely bounded maps -- Minimal tensor product -- Minimal and maximal operator space structures on a Banach space -- Projective tensor product -- The Haagerup tensor product -- Characterizations of operator algebras -- The operator Hilbert space -- Group C*-algebras -- Examples and comments -- Comparisons -- Operator Spaces and C*-tensor products -- C*-norms on tensor products -- Nuclearity and approximation properties -- C* -- Kirchberg's theorem on decomposable maps -- The weak expectation property -- The local lifting property -- Exactness -- Local reflexivity -- Grothendieck's theorem for operator spaces -- Estimating the norms of sums of unitaries -- Local theory of operator spaces -- Completely isomorphic C*-algebras -- Injective and projective operator spaces -- Operator Spaces and Non Self-Adjoint Operator Algebras -- Maximal tensor products and free products of non self-adjoint operator algebras -- The Blechter-Paulsen factorization -- Similarity problems -- The Sz-nagy-halmos similarity problem -- Solutions to the exercises The theory of operator spaces is very recent and can be described as a non-commutative Banach space theory. An 'operator space' is simply a Banach space with an embedding into the space B(H) of all bounded operators on a Hilbert space H. The first part of this book is an introduction with emphasis on examples that illustrate various aspects of the theory. The second part is devoted to applications to C*-algebras, with a systematic exposition of tensor products of C* algebras. The third (and shorter) part of the book describes applications to non self-adjoint operator algebras, and similarity problems. In particular the author's counterexample to the 'Halmos problem' is presented, as well as work on the new concept of "length" of an operator algebra. Graduate students and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find that this book has much to offer Espaces d'opérateurs Funktionalanalysis swd Operatorraum swd MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Operator spaces local Operator spaces Operatorraum (DE-588)4591231-2 gnd rswk-swf Operatorraum (DE-588)4591231-2 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pisier, Gilles Introduction to operator space theory Espaces d'opérateurs Funktionalanalysis swd Operatorraum swd MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Operator spaces local Operator spaces Operatorraum (DE-588)4591231-2 gnd |
subject_GND | (DE-588)4591231-2 |
title | Introduction to operator space theory |
title_auth | Introduction to operator space theory |
title_exact_search | Introduction to operator space theory |
title_full | Introduction to operator space theory Gilles Pisier |
title_fullStr | Introduction to operator space theory Gilles Pisier |
title_full_unstemmed | Introduction to operator space theory Gilles Pisier |
title_short | Introduction to operator space theory |
title_sort | introduction to operator space theory |
topic | Espaces d'opérateurs Funktionalanalysis swd Operatorraum swd MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Operator spaces local Operator spaces Operatorraum (DE-588)4591231-2 gnd |
topic_facet | Espaces d'opérateurs Funktionalanalysis Operatorraum MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Operator spaces |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=120691 |
work_keys_str_mv | AT pisiergilles introductiontooperatorspacetheory |