Linear regression analysis: theory and computing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
©2009
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 317-324) and index 1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example -- - 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20. - Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression -- - 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields |
Beschreibung: | 1 Online-Ressource (xix, 328 pages) |
ISBN: | 1282441698 9781282441699 9789812834102 9789812834119 9812834109 9812834117 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043132476 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 |||| o||u| ||||||eng d | ||
020 | |a 1282441698 |9 1-282-44169-8 | ||
020 | |a 9781282441699 |9 978-1-282-44169-9 | ||
020 | |a 9789812834102 |9 978-981-283-410-2 | ||
020 | |a 9789812834119 |c electronic bk. |9 978-981-283-411-9 | ||
020 | |a 9812834109 |9 981-283-410-9 | ||
020 | |a 9812834117 |c electronic bk. |9 981-283-411-7 | ||
035 | |a (OCoLC)613658550 | ||
035 | |a (DE-599)BVBBV043132476 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 519.536 |2 22 | |
100 | 1 | |a Yan, Xin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear regression analysis |b theory and computing |c Xin Yan, Xiao Gang Su |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c ©2009 | |
300 | |a 1 Online-Ressource (xix, 328 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 317-324) and index | ||
500 | |a 1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example -- | ||
500 | |a - 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20. | ||
500 | |a - Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression -- | ||
500 | |a - 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging | ||
500 | |a This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields | ||
650 | 7 | |a MATHEMATICS / Probability & Statistics / Regression Analysis |2 bisacsh | |
650 | 4 | |a Regression analysis | |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Regression |0 (DE-588)4167709-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Lineare Regression |0 (DE-588)4167709-2 |D s |
689 | 0 | 1 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Su, Xiaogang |e Sonstige |4 oth | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028556667 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175573132509184 |
---|---|
any_adam_object | |
author | Yan, Xin |
author_facet | Yan, Xin |
author_role | aut |
author_sort | Yan, Xin |
author_variant | x y xy |
building | Verbundindex |
bvnumber | BV043132476 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)613658550 (DE-599)BVBBV043132476 |
dewey-full | 519.536 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.536 |
dewey-search | 519.536 |
dewey-sort | 3519.536 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05908nmm a2200589zc 4500</leader><controlfield tag="001">BV043132476</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282441698</subfield><subfield code="9">1-282-44169-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282441699</subfield><subfield code="9">978-1-282-44169-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812834102</subfield><subfield code="9">978-981-283-410-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812834119</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-411-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812834109</subfield><subfield code="9">981-283-410-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812834117</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-283-411-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)613658550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043132476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.536</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yan, Xin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear regression analysis</subfield><subfield code="b">theory and computing</subfield><subfield code="c">Xin Yan, Xiao Gang Su</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 328 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 317-324) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Probability & Statistics / Regression Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Regression</subfield><subfield code="0">(DE-588)4167709-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Regression</subfield><subfield code="0">(DE-588)4167709-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, Xiaogang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028556667</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV043132476 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:26Z |
institution | BVB |
isbn | 1282441698 9781282441699 9789812834102 9789812834119 9812834109 9812834117 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028556667 |
oclc_num | 613658550 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xix, 328 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Yan, Xin Verfasser aut Linear regression analysis theory and computing Xin Yan, Xiao Gang Su Singapore World Scientific Pub. Co. ©2009 1 Online-Ressource (xix, 328 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 317-324) and index 1. Introduction. 1.1. Regression model. 1.2. Goals of regression analysis. 1.3. Statistical computing in regression analysis -- 2. Simple linear regression. 2.1. Introduction. 2.2. Least squares estimation. 2.3. Statistical properties of the least squares estimation. 2.4. Maximum likelihood estimation. 2.5. Confidence interval on regression mean and regression prediction. 2.6. Statistical inference on regression parameters. 2.7. Residual analysis and model diagnosis. 2.8. Example -- - 3. Multiple linear regression. 3.1. Vector space and projection. 3.2. Matrix form of multiple linear regression. 3.3. Quadratic form of random variables. 3.4. Idempotent matrices. 3.5. Multivariate normal distribution. 3.6. Quadratic form of the multivariate normal variables. 3.7. Least squares estimates of the multiple regression parameters. 3.8. Matrix form of the simple linear regression. 3.9. Test for full model and reduced model. 3.10. Test for general linear hypothesis. 3.11. The least squares estimates of multiple regression parameters under linear restrictions. 3.12. Confidence intervals of mean and prediction in multiple regression. 3.13. Simultaneous test for regression parameters. 3.14. Bonferroni confidence region for regression parameters. 3.15. Interaction and confounding. 3.16. Regression with dummy variables. 3.17. Collinearity in multiple linear regression. 3.18. Linear model in centered form. 3.19. Numerical computation of LSE via QR decomposition. 3.20. - Analysis of regression residual. 3.21. Check for normality of the error term in multiple regression. 3.22. Example -- 4. Detection of outliers and influential observations in multiple linear regression. 4.1. Model diagnosis for multiple linear regression. 4.2. Detection of outliers in multiple linear regression. 4.3. Detection of influential observations in multiple linear regression. 4.4. Test for mean-shift outliers. 4.5. Graphical display of regression diagnosis. 4.6. Test for inferential observations. 4.7. Example -- 5. Model selection. 5.1. Effect of underfitting and overfitting. 5.2. All possible regressions. 5.3. Stepwise selection. 5.4. Examples. 5.5. Other related issues -- 6. Model diagnostics. 6.1. Test heteroscedasticity. 6.2. Detection of regression functional form -- 7. Extensions of least squares. 7.1. Non-full-rank linear regression models. 7.2. Generalized least squares. 7.3. Ridge regression and LASSO. 7.4. Parametric nonlinear regression -- - 8. Generalized linear models. 8.1. Introduction: a motivating example. 8.2. Components of GLM. 8.3. Maximum likelihood estimation of GLM. 8.4. Statistical inference and other issues in GLM. 8.5. Logistic regression for binary data. 8.6. Poisson regression for count data -- 9. Bayesian linear regression. 9.1. Bayesian linear models. Bayesian model averaging This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields MATHEMATICS / Probability & Statistics / Regression Analysis bisacsh Regression analysis Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Lineare Regression (DE-588)4167709-2 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Lineare Regression (DE-588)4167709-2 s Regressionsanalyse (DE-588)4129903-6 s 2\p DE-604 Su, Xiaogang Sonstige oth World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Yan, Xin Linear regression analysis theory and computing MATHEMATICS / Probability & Statistics / Regression Analysis bisacsh Regression analysis Regressionsanalyse (DE-588)4129903-6 gnd Lineare Regression (DE-588)4167709-2 gnd |
subject_GND | (DE-588)4129903-6 (DE-588)4167709-2 (DE-588)4123623-3 |
title | Linear regression analysis theory and computing |
title_auth | Linear regression analysis theory and computing |
title_exact_search | Linear regression analysis theory and computing |
title_full | Linear regression analysis theory and computing Xin Yan, Xiao Gang Su |
title_fullStr | Linear regression analysis theory and computing Xin Yan, Xiao Gang Su |
title_full_unstemmed | Linear regression analysis theory and computing Xin Yan, Xiao Gang Su |
title_short | Linear regression analysis |
title_sort | linear regression analysis theory and computing |
title_sub | theory and computing |
topic | MATHEMATICS / Probability & Statistics / Regression Analysis bisacsh Regression analysis Regressionsanalyse (DE-588)4129903-6 gnd Lineare Regression (DE-588)4167709-2 gnd |
topic_facet | MATHEMATICS / Probability & Statistics / Regression Analysis Regression analysis Regressionsanalyse Lineare Regression Lehrbuch |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305216 |
work_keys_str_mv | AT yanxin linearregressionanalysistheoryandcomputing AT suxiaogang linearregressionanalysistheoryandcomputing AT worldscientificfirm linearregressionanalysistheoryandcomputing |