Prime obsession: Bernhard Riemann and the greatest unsolved problem in mathematics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, DC
Joseph Henry Press
©2003
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes index Includes bibliographical references and index Part I. The prime number theorem. Card trick -- The soil, the crop -- The prime number theorem -- On the shoulders of giants -- Riemann's zeta function -- The great fusion -- The golden key, and an improved prime number theorem -- Not altogether unworthy -- Domain stretching -- A proof and a turning point. Part II. The Riemann hypothesis. Nine Zulu queens ruled China -- Hilbert's eighth problem -- The argument ant and the value ant -- In the grip of an obsession -- Big oh and Mobius Mu -- Climbing the critical line -- A little algebra -- Number theory meets quantum mechanics -- Turning the golden key -- The Riemann operator and other approaches -- The error term -- Either it's true, or else it isn't Annotation |
Beschreibung: | 1 Online-Ressource (xv, 422 pages) |
ISBN: | 0309085497 9780309085496 0309512573 9780309512572 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043126525 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2003 |||| o||u| ||||||eng d | ||
020 | |a 0309085497 |9 0-309-08549-7 | ||
020 | |a 9780309085496 |9 978-0-309-08549-6 | ||
020 | |a 0309512573 |9 0-309-51257-3 | ||
020 | |a 9780309512572 |9 978-0-309-51257-2 | ||
035 | |a (OCoLC)61519857 | ||
035 | |a (DE-599)BVBBV043126525 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
082 | 0 | |a 512/.72 |2 22 | |
100 | 1 | |a Derbyshire, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Prime obsession |b Bernhard Riemann and the greatest unsolved problem in mathematics |c John Derbyshire |
246 | 1 | 3 | |a Bernhard Riemann and the greatest unsolved problem in mathematics |
264 | 1 | |a Washington, DC |b Joseph Henry Press |c ©2003 | |
300 | |a 1 Online-Ressource (xv, 422 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Part I. The prime number theorem. Card trick -- The soil, the crop -- The prime number theorem -- On the shoulders of giants -- Riemann's zeta function -- The great fusion -- The golden key, and an improved prime number theorem -- Not altogether unworthy -- Domain stretching -- A proof and a turning point. Part II. The Riemann hypothesis. Nine Zulu queens ruled China -- Hilbert's eighth problem -- The argument ant and the value ant -- In the grip of an obsession -- Big oh and Mobius Mu -- Climbing the critical line -- A little algebra -- Number theory meets quantum mechanics -- Turning the golden key -- The Riemann operator and other approaches -- The error term -- Either it's true, or else it isn't | ||
500 | |a Annotation | ||
600 | 1 | 4 | |a Riemann, Bernhard / 1826-1866 |
600 | 1 | 7 | |a Riemann, Bernhard / 1826-1866 |2 fast |
600 | 1 | 4 | |a Riemann, Bernhard |d 1826-1866 |
600 | 1 | 7 | |a Riemann, Bernhard |d 1826-1866 |0 (DE-588)118600869 |2 gnd |9 rswk-swf |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Nombres premiers | |
650 | 4 | |a Séries (Mathématiques) | |
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Numbers, Prime |2 fast | |
650 | 7 | |a Series |2 fast | |
650 | 7 | |a Priemgetallen |2 gtt | |
650 | 7 | |a Teoria dos números (textos elementares) |2 larpcal | |
650 | 7 | |a Função zeta de riemann (teoria dos números) |2 larpcal | |
650 | 7 | |a Números primos |2 larpcal | |
650 | 4 | |a Numbers, Prime | |
650 | 4 | |a Series | |
650 | 0 | 7 | |a Riemannsche Vermutung |0 (DE-588)4704537-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reihe |0 (DE-588)4049197-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Primzahl |0 (DE-588)4047263-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Primzahl |0 (DE-588)4047263-2 |D s |
689 | 0 | 1 | |a Reihe |0 (DE-588)4049197-3 |D s |
689 | 0 | 2 | |a Riemann, Bernhard |d 1826-1866 |0 (DE-588)118600869 |D p |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemann, Bernhard |d 1826-1866 |0 (DE-588)118600869 |D p |
689 | 1 | 1 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Riemannsche Vermutung |0 (DE-588)4704537-1 |D s |
689 | 2 | 1 | |a Geschichte |A z |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=87093 |x Aggregator |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-4-EBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028550716 |
Datensatz im Suchindex
_version_ | 1813615445122482176 |
---|---|
adam_text | |
any_adam_object | |
author | Derbyshire, John |
author_facet | Derbyshire, John |
author_role | aut |
author_sort | Derbyshire, John |
author_variant | j d jd |
building | Verbundindex |
bvnumber | BV043126525 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)61519857 (DE-599)BVBBV043126525 |
dewey-full | 512/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.72 |
dewey-search | 512/.72 |
dewey-sort | 3512 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV043126525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0309085497</subfield><subfield code="9">0-309-08549-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780309085496</subfield><subfield code="9">978-0-309-08549-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0309512573</subfield><subfield code="9">0-309-51257-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780309512572</subfield><subfield code="9">978-0-309-51257-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)61519857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043126525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Derbyshire, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prime obsession</subfield><subfield code="b">Bernhard Riemann and the greatest unsolved problem in mathematics</subfield><subfield code="c">John Derbyshire</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Bernhard Riemann and the greatest unsolved problem in mathematics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, DC</subfield><subfield code="b">Joseph Henry Press</subfield><subfield code="c">©2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 422 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I. The prime number theorem. Card trick -- The soil, the crop -- The prime number theorem -- On the shoulders of giants -- Riemann's zeta function -- The great fusion -- The golden key, and an improved prime number theorem -- Not altogether unworthy -- Domain stretching -- A proof and a turning point. Part II. The Riemann hypothesis. Nine Zulu queens ruled China -- Hilbert's eighth problem -- The argument ant and the value ant -- In the grip of an obsession -- Big oh and Mobius Mu -- Climbing the critical line -- A little algebra -- Number theory meets quantum mechanics -- Turning the golden key -- The Riemann operator and other approaches -- The error term -- Either it's true, or else it isn't</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Annotation</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Riemann, Bernhard / 1826-1866</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Riemann, Bernhard / 1826-1866</subfield><subfield code="2">fast</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Riemann, Bernhard</subfield><subfield code="d">1826-1866</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Riemann, Bernhard</subfield><subfield code="d">1826-1866</subfield><subfield code="0">(DE-588)118600869</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres premiers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Séries (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numbers, Prime</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Priemgetallen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria dos números (textos elementares)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Função zeta de riemann (teoria dos números)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Números primos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Prime</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Vermutung</subfield><subfield code="0">(DE-588)4704537-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihe</subfield><subfield code="0">(DE-588)4049197-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Primzahl</subfield><subfield code="0">(DE-588)4047263-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Primzahl</subfield><subfield code="0">(DE-588)4047263-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reihe</subfield><subfield code="0">(DE-588)4049197-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Riemann, Bernhard</subfield><subfield code="d">1826-1866</subfield><subfield code="0">(DE-588)118600869</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemann, Bernhard</subfield><subfield code="d">1826-1866</subfield><subfield code="0">(DE-588)118600869</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Riemannsche Vermutung</subfield><subfield code="0">(DE-588)4704537-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=87093</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028550716</subfield></datafield></record></collection> |
id | DE-604.BV043126525 |
illustrated | Not Illustrated |
indexdate | 2024-10-22T12:01:09Z |
institution | BVB |
isbn | 0309085497 9780309085496 0309512573 9780309512572 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028550716 |
oclc_num | 61519857 |
open_access_boolean | |
physical | 1 Online-Ressource (xv, 422 pages) |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Joseph Henry Press |
record_format | marc |
spelling | Derbyshire, John Verfasser aut Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics John Derbyshire Bernhard Riemann and the greatest unsolved problem in mathematics Washington, DC Joseph Henry Press ©2003 1 Online-Ressource (xv, 422 pages) txt rdacontent c rdamedia cr rdacarrier Includes index Includes bibliographical references and index Part I. The prime number theorem. Card trick -- The soil, the crop -- The prime number theorem -- On the shoulders of giants -- Riemann's zeta function -- The great fusion -- The golden key, and an improved prime number theorem -- Not altogether unworthy -- Domain stretching -- A proof and a turning point. Part II. The Riemann hypothesis. Nine Zulu queens ruled China -- Hilbert's eighth problem -- The argument ant and the value ant -- In the grip of an obsession -- Big oh and Mobius Mu -- Climbing the critical line -- A little algebra -- Number theory meets quantum mechanics -- Turning the golden key -- The Riemann operator and other approaches -- The error term -- Either it's true, or else it isn't Annotation Riemann, Bernhard / 1826-1866 Riemann, Bernhard / 1826-1866 fast Riemann, Bernhard 1826-1866 Riemann, Bernhard 1826-1866 (DE-588)118600869 gnd rswk-swf Geschichte gnd rswk-swf Nombres premiers Séries (Mathématiques) MATHEMATICS / Number Theory bisacsh Numbers, Prime fast Series fast Priemgetallen gtt Teoria dos números (textos elementares) larpcal Função zeta de riemann (teoria dos números) larpcal Números primos larpcal Numbers, Prime Series Riemannsche Vermutung (DE-588)4704537-1 gnd rswk-swf Reihe (DE-588)4049197-3 gnd rswk-swf Primzahl (DE-588)4047263-2 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Primzahl (DE-588)4047263-2 s Reihe (DE-588)4049197-3 s Riemann, Bernhard 1826-1866 (DE-588)118600869 p 1\p DE-604 Zahlentheorie (DE-588)4067277-3 s 2\p DE-604 Riemannsche Vermutung (DE-588)4704537-1 s Geschichte z 3\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=87093 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Derbyshire, John Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics Riemann, Bernhard / 1826-1866 Riemann, Bernhard / 1826-1866 fast Riemann, Bernhard 1826-1866 Riemann, Bernhard 1826-1866 (DE-588)118600869 gnd Nombres premiers Séries (Mathématiques) MATHEMATICS / Number Theory bisacsh Numbers, Prime fast Series fast Priemgetallen gtt Teoria dos números (textos elementares) larpcal Função zeta de riemann (teoria dos números) larpcal Números primos larpcal Numbers, Prime Series Riemannsche Vermutung (DE-588)4704537-1 gnd Reihe (DE-588)4049197-3 gnd Primzahl (DE-588)4047263-2 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)118600869 (DE-588)4704537-1 (DE-588)4049197-3 (DE-588)4047263-2 (DE-588)4067277-3 |
title | Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics |
title_alt | Bernhard Riemann and the greatest unsolved problem in mathematics |
title_auth | Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics |
title_exact_search | Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics |
title_full | Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics John Derbyshire |
title_fullStr | Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics John Derbyshire |
title_full_unstemmed | Prime obsession Bernhard Riemann and the greatest unsolved problem in mathematics John Derbyshire |
title_short | Prime obsession |
title_sort | prime obsession bernhard riemann and the greatest unsolved problem in mathematics |
title_sub | Bernhard Riemann and the greatest unsolved problem in mathematics |
topic | Riemann, Bernhard / 1826-1866 Riemann, Bernhard / 1826-1866 fast Riemann, Bernhard 1826-1866 Riemann, Bernhard 1826-1866 (DE-588)118600869 gnd Nombres premiers Séries (Mathématiques) MATHEMATICS / Number Theory bisacsh Numbers, Prime fast Series fast Priemgetallen gtt Teoria dos números (textos elementares) larpcal Função zeta de riemann (teoria dos números) larpcal Números primos larpcal Numbers, Prime Series Riemannsche Vermutung (DE-588)4704537-1 gnd Reihe (DE-588)4049197-3 gnd Primzahl (DE-588)4047263-2 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Riemann, Bernhard / 1826-1866 Riemann, Bernhard 1826-1866 Nombres premiers Séries (Mathématiques) MATHEMATICS / Number Theory Numbers, Prime Series Priemgetallen Teoria dos números (textos elementares) Função zeta de riemann (teoria dos números) Números primos Riemannsche Vermutung Reihe Primzahl Zahlentheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=87093 |
work_keys_str_mv | AT derbyshirejohn primeobsessionbernhardriemannandthegreatestunsolvedprobleminmathematics AT derbyshirejohn bernhardriemannandthegreatestunsolvedprobleminmathematics |