Shadows of reality: the fourth dimension in relativity, cubism, and modern thought
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Haven
Yale University Press
c2006
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 125-128) and index The origins of four-dimensional geometry -- Fantasies of four-dimensional space -- The fourth dimension in painting -- The truth -- A very short course in projective geometry -- Patterns, crystals, and projections -- Twistors and projections -- Entanglement, quantum geometry, and projective reality -- Category theory, higher-dimensional algebra, and the dimension ladder -- The computer revolution in four-dimensional geometry -- Conclusion : art, math, and technical drawing In this insightful book, which is a revisionist mathematics history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today's most exciting developments in art, math, physics, and computer visualization |
Beschreibung: | 1 Online-Ressource (xiv, 137 p.) |
ISBN: | 0300110391 0300129629 1281730424 9780300110395 9780300129625 9781281730428 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043119098 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 0300110391 |c alk. paper |9 0-300-11039-1 | ||
020 | |a 0300129629 |c electronic bk. |9 0-300-12962-9 | ||
020 | |a 1281730424 |9 1-281-73042-4 | ||
020 | |a 9780300110395 |9 978-0-300-11039-5 | ||
020 | |a 9780300129625 |c electronic bk. |9 978-0-300-12962-5 | ||
020 | |a 9781281730428 |9 978-1-281-73042-8 | ||
035 | |a (OCoLC)129664422 | ||
035 | |a (DE-599)BVBBV043119098 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.11 |2 22 | |
100 | 1 | |a Robbin, Tony |e Verfasser |4 aut | |
245 | 1 | 0 | |a Shadows of reality |b the fourth dimension in relativity, cubism, and modern thought |c Tony Robbin |
264 | 1 | |a New Haven |b Yale University Press |c c2006 | |
300 | |a 1 Online-Ressource (xiv, 137 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 125-128) and index | ||
500 | |a The origins of four-dimensional geometry -- Fantasies of four-dimensional space -- The fourth dimension in painting -- The truth -- A very short course in projective geometry -- Patterns, crystals, and projections -- Twistors and projections -- Entanglement, quantum geometry, and projective reality -- Category theory, higher-dimensional algebra, and the dimension ladder -- The computer revolution in four-dimensional geometry -- Conclusion : art, math, and technical drawing | ||
500 | |a In this insightful book, which is a revisionist mathematics history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today's most exciting developments in art, math, physics, and computer visualization | ||
648 | 7 | |a Geschichte 1850-200 |2 gnd |9 rswk-swf | |
650 | 7 | |a SCIENCE / Physics / Relativity |2 bisacsh | |
650 | 7 | |a SCIENCE / General |2 bisacsh | |
650 | 7 | |a Art / Mathematics |2 fast | |
650 | 7 | |a Fourth dimension |2 fast | |
650 | 7 | |a Geometric quantization |2 fast | |
650 | 7 | |a Geometry in art |2 fast | |
650 | 7 | |a Hyperspace |2 fast | |
650 | 4 | |a Kunst | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Geometric quantization | |
650 | 4 | |a Fourth dimension | |
650 | 4 | |a Art |x Mathematics | |
650 | 4 | |a Geometry in art | |
650 | 4 | |a Hyperspace | |
650 | 0 | 7 | |a Kunst |0 (DE-588)4114333-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 4 |0 (DE-588)4338676-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kunst |0 (DE-588)4114333-4 |D s |
689 | 0 | 1 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 0 | 2 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 0 | 3 | |a Geschichte 1850-200 |A z |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kunst |0 (DE-588)4114333-4 |D s |
689 | 1 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028543289 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175546650722304 |
---|---|
any_adam_object | |
author | Robbin, Tony |
author_facet | Robbin, Tony |
author_role | aut |
author_sort | Robbin, Tony |
author_variant | t r tr |
building | Verbundindex |
bvnumber | BV043119098 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)129664422 (DE-599)BVBBV043119098 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik |
era | Geschichte 1850-200 gnd |
era_facet | Geschichte 1850-200 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04918nmm a2200757zc 4500</leader><controlfield tag="001">BV043119098</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0300110391</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-300-11039-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0300129629</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-300-12962-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281730424</subfield><subfield code="9">1-281-73042-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780300110395</subfield><subfield code="9">978-0-300-11039-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780300129625</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-300-12962-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281730428</subfield><subfield code="9">978-1-281-73042-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)129664422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043119098</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robbin, Tony</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shadows of reality</subfield><subfield code="b">the fourth dimension in relativity, cubism, and modern thought</subfield><subfield code="c">Tony Robbin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Haven</subfield><subfield code="b">Yale University Press</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 137 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 125-128) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The origins of four-dimensional geometry -- Fantasies of four-dimensional space -- The fourth dimension in painting -- The truth -- A very short course in projective geometry -- Patterns, crystals, and projections -- Twistors and projections -- Entanglement, quantum geometry, and projective reality -- Category theory, higher-dimensional algebra, and the dimension ladder -- The computer revolution in four-dimensional geometry -- Conclusion : art, math, and technical drawing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this insightful book, which is a revisionist mathematics history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today's most exciting developments in art, math, physics, and computer visualization</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1850-200</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Relativity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Art / Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourth dimension</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric quantization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry in art</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperspace</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kunst</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric quantization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourth dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Art</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry in art</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperspace</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kunst</subfield><subfield code="0">(DE-588)4114333-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kunst</subfield><subfield code="0">(DE-588)4114333-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Geschichte 1850-200</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kunst</subfield><subfield code="0">(DE-588)4114333-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028543289</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043119098 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:18:01Z |
institution | BVB |
isbn | 0300110391 0300129629 1281730424 9780300110395 9780300129625 9781281730428 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028543289 |
oclc_num | 129664422 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 137 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Yale University Press |
record_format | marc |
spelling | Robbin, Tony Verfasser aut Shadows of reality the fourth dimension in relativity, cubism, and modern thought Tony Robbin New Haven Yale University Press c2006 1 Online-Ressource (xiv, 137 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (p. 125-128) and index The origins of four-dimensional geometry -- Fantasies of four-dimensional space -- The fourth dimension in painting -- The truth -- A very short course in projective geometry -- Patterns, crystals, and projections -- Twistors and projections -- Entanglement, quantum geometry, and projective reality -- Category theory, higher-dimensional algebra, and the dimension ladder -- The computer revolution in four-dimensional geometry -- Conclusion : art, math, and technical drawing In this insightful book, which is a revisionist mathematics history as well as a revisionist art history, Tony Robbin, well known for his innovative computer visualizations of hyperspace, investigates different models of the fourth dimension and how these are applied in art and physics. Robbin explores the distinction between the slicing, or Flatland, model and the projection, or shadow, model. He compares the history of these two models and their uses and misuses in popular discussions. Robbin breaks new ground with his original argument that Picasso used the projection model to invent cubism, and that Minkowski had four-dimensional projective geometry in mind when he structured special relativity. The discussion is brought to the present with an exposition of the projection model in the most creative ideas about space in contemporary mathematics such as twisters, quasicrystals, and quantum topology. Robbin clarifies these esoteric concepts with understandable drawings and diagrams. Robbin proposes that the powerful role of projective geometry in the development of current mathematical ideas has been long overlooked and that our attachment to the slicing model is essentially a conceptual block that hinders progress in understanding contemporary models of spacetime. He offers a fascinating review of how projective ideas are the source of some of today's most exciting developments in art, math, physics, and computer visualization Geschichte 1850-200 gnd rswk-swf SCIENCE / Physics / Relativity bisacsh SCIENCE / General bisacsh Art / Mathematics fast Fourth dimension fast Geometric quantization fast Geometry in art fast Hyperspace fast Kunst Mathematik Geometric quantization Fourth dimension Art Mathematics Geometry in art Hyperspace Kunst (DE-588)4114333-4 gnd rswk-swf Dimension 4 (DE-588)4338676-3 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Kunst (DE-588)4114333-4 s Projektive Geometrie (DE-588)4047436-7 s Dimension 4 (DE-588)4338676-3 s Geschichte 1850-200 z 1\p DE-604 Mathematik (DE-588)4037944-9 s 2\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Robbin, Tony Shadows of reality the fourth dimension in relativity, cubism, and modern thought SCIENCE / Physics / Relativity bisacsh SCIENCE / General bisacsh Art / Mathematics fast Fourth dimension fast Geometric quantization fast Geometry in art fast Hyperspace fast Kunst Mathematik Geometric quantization Fourth dimension Art Mathematics Geometry in art Hyperspace Kunst (DE-588)4114333-4 gnd Dimension 4 (DE-588)4338676-3 gnd Mathematik (DE-588)4037944-9 gnd Projektive Geometrie (DE-588)4047436-7 gnd |
subject_GND | (DE-588)4114333-4 (DE-588)4338676-3 (DE-588)4037944-9 (DE-588)4047436-7 |
title | Shadows of reality the fourth dimension in relativity, cubism, and modern thought |
title_auth | Shadows of reality the fourth dimension in relativity, cubism, and modern thought |
title_exact_search | Shadows of reality the fourth dimension in relativity, cubism, and modern thought |
title_full | Shadows of reality the fourth dimension in relativity, cubism, and modern thought Tony Robbin |
title_fullStr | Shadows of reality the fourth dimension in relativity, cubism, and modern thought Tony Robbin |
title_full_unstemmed | Shadows of reality the fourth dimension in relativity, cubism, and modern thought Tony Robbin |
title_short | Shadows of reality |
title_sort | shadows of reality the fourth dimension in relativity cubism and modern thought |
title_sub | the fourth dimension in relativity, cubism, and modern thought |
topic | SCIENCE / Physics / Relativity bisacsh SCIENCE / General bisacsh Art / Mathematics fast Fourth dimension fast Geometric quantization fast Geometry in art fast Hyperspace fast Kunst Mathematik Geometric quantization Fourth dimension Art Mathematics Geometry in art Hyperspace Kunst (DE-588)4114333-4 gnd Dimension 4 (DE-588)4338676-3 gnd Mathematik (DE-588)4037944-9 gnd Projektive Geometrie (DE-588)4047436-7 gnd |
topic_facet | SCIENCE / Physics / Relativity SCIENCE / General Art / Mathematics Fourth dimension Geometric quantization Geometry in art Hyperspace Kunst Mathematik Art Mathematics Dimension 4 Projektive Geometrie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=187918 |
work_keys_str_mv | AT robbintony shadowsofrealitythefourthdimensioninrelativitycubismandmodernthought |