Applications of fractional calculus in physics:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific
c2000
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references Chapter I. An Introduction to Fractional Calculus Chapter II. Fractional Time Evolution Chapter III. Fractional Powers of Infinitesimal Generators of Semigroups Chapter IV. Fractional Differences, Derivatives and Fractal Time Series Chapter V. Fractional Kinetics of Hamiltonian Chaotic Systems Chapter VI. Polymer Science Applications of Path-Integration, Integral Equations, and Fractional Calculus Chapter VII. Applications to Problems in Polymer Physics and Rheology Chapter VIII. Applications of Fractional Calculus Techniques to Problems in Biophysics Chapter IX. Fractional Calculus and Regular Variation in Thermodynamics Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology |
Beschreibung: | 1 Online-Ressource (vii, 463 p.) |
ISBN: | 9789810234577 9789812817747 9810234570 9812817743 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043117147 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789810234577 |9 978-981-02-3457-7 | ||
020 | |a 9789812817747 |c electronic bk. |9 978-981-281-774-7 | ||
020 | |a 9810234570 |9 981-02-3457-0 | ||
020 | |a 9812817743 |c electronic bk. |9 981-281-774-3 | ||
035 | |a (OCoLC)824698176 | ||
035 | |a (DE-599)BVBBV043117147 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.15/583 |2 22 | |
245 | 1 | 0 | |a Applications of fractional calculus in physics |c editor, R. Hilfer |
246 | 1 | 3 | |a Fractional calculus in physics |
264 | 1 | |a Singapore |b World Scientific |c c2000 | |
300 | |a 1 Online-Ressource (vii, 463 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
500 | |a Chapter I. An Introduction to Fractional Calculus Chapter II. Fractional Time Evolution Chapter III. Fractional Powers of Infinitesimal Generators of Semigroups Chapter IV. Fractional Differences, Derivatives and Fractal Time Series Chapter V. Fractional Kinetics of Hamiltonian Chaotic Systems Chapter VI. Polymer Science Applications of Path-Integration, Integral Equations, and Fractional Calculus Chapter VII. Applications to Problems in Polymer Physics and Rheology Chapter VIII. Applications of Fractional Calculus Techniques to Problems in Biophysics Chapter IX. Fractional Calculus and Regular Variation in Thermodynamics | ||
500 | |a Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology | ||
650 | 7 | |a Ableitung gebrochener Ordnung |2 swd | |
650 | 7 | |a Aufsatzsammlung |2 swd | |
650 | 7 | |a Integral gebrochener Ordnung |2 swd | |
650 | 7 | |a Mathematische Physik |2 swd | |
650 | 7 | |a SCIENCE / Physics / Mathematical & Computational |2 bisacsh | |
650 | 7 | |a Fractional calculus |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Fractional calculus | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Ableitung gebrochener Ordnung |0 (DE-588)4365956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integral gebrochener Ordnung |0 (DE-588)4365957-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Ableitung gebrochener Ordnung |0 (DE-588)4365956-1 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Integral gebrochener Ordnung |0 (DE-588)4365957-3 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Hilfer, Rudolf |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028541338 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175542934568960 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV043117147 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)824698176 (DE-599)BVBBV043117147 |
dewey-full | 530.15/583 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/583 |
dewey-search | 530.15/583 |
dewey-sort | 3530.15 3583 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04215nmm a2200673zc 4500</leader><controlfield tag="001">BV043117147</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810234577</subfield><subfield code="9">978-981-02-3457-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812817747</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-774-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810234570</subfield><subfield code="9">981-02-3457-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812817743</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-774-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)824698176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043117147</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15/583</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of fractional calculus in physics</subfield><subfield code="c">editor, R. Hilfer</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Fractional calculus in physics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 463 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter I. An Introduction to Fractional Calculus Chapter II. Fractional Time Evolution Chapter III. Fractional Powers of Infinitesimal Generators of Semigroups Chapter IV. Fractional Differences, Derivatives and Fractal Time Series Chapter V. Fractional Kinetics of Hamiltonian Chaotic Systems Chapter VI. Polymer Science Applications of Path-Integration, Integral Equations, and Fractional Calculus Chapter VII. Applications to Problems in Polymer Physics and Rheology Chapter VIII. Applications of Fractional Calculus Techniques to Problems in Biophysics Chapter IX. Fractional Calculus and Regular Variation in Thermodynamics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral gebrochener Ordnung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Mathematical & Computational</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractional calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integral gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365957-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ableitung gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integral gebrochener Ordnung</subfield><subfield code="0">(DE-588)4365957-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hilfer, Rudolf</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028541338</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV043117147 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:57Z |
institution | BVB |
isbn | 9789810234577 9789812817747 9810234570 9812817743 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028541338 |
oclc_num | 824698176 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 463 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific |
record_format | marc |
spelling | Applications of fractional calculus in physics editor, R. Hilfer Fractional calculus in physics Singapore World Scientific c2000 1 Online-Ressource (vii, 463 p.) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references Chapter I. An Introduction to Fractional Calculus Chapter II. Fractional Time Evolution Chapter III. Fractional Powers of Infinitesimal Generators of Semigroups Chapter IV. Fractional Differences, Derivatives and Fractal Time Series Chapter V. Fractional Kinetics of Hamiltonian Chaotic Systems Chapter VI. Polymer Science Applications of Path-Integration, Integral Equations, and Fractional Calculus Chapter VII. Applications to Problems in Polymer Physics and Rheology Chapter VIII. Applications of Fractional Calculus Techniques to Problems in Biophysics Chapter IX. Fractional Calculus and Regular Variation in Thermodynamics Nine independent treatments that have been only lightly edited to retain the diverse styles and levels of formalization in the different areas of application. A unifying theme is that fractional derivatives arise as the infinitesimal generators of a class of translation- invariant convolution semigroups, which appear universally as attractors for coarse graining procedures or scale change, and are parametrized by a number in the unit interval corresponding to the order of the fractional derivative. After an introduction to fractional calculus, the topics include fractional time evolution, the fractional kinetics of Hamiltonian chaotic systems, and applications to problems in polymer physics and rheology Ableitung gebrochener Ordnung swd Aufsatzsammlung swd Integral gebrochener Ordnung swd Mathematische Physik swd SCIENCE / Physics / Mathematical & Computational bisacsh Fractional calculus fast Mathematical physics fast Mathematische Physik Fractional calculus Mathematical physics Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Integral gebrochener Ordnung (DE-588)4365957-3 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Ableitung gebrochener Ordnung (DE-588)4365956-1 s Mathematische Physik (DE-588)4037952-8 s 2\p DE-604 Integral gebrochener Ordnung (DE-588)4365957-3 s 3\p DE-604 Hilfer, Rudolf Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Applications of fractional calculus in physics Ableitung gebrochener Ordnung swd Aufsatzsammlung swd Integral gebrochener Ordnung swd Mathematische Physik swd SCIENCE / Physics / Mathematical & Computational bisacsh Fractional calculus fast Mathematical physics fast Mathematische Physik Fractional calculus Mathematical physics Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Integral gebrochener Ordnung (DE-588)4365957-3 gnd |
subject_GND | (DE-588)4365956-1 (DE-588)4037952-8 (DE-588)4365957-3 (DE-588)4143413-4 |
title | Applications of fractional calculus in physics |
title_alt | Fractional calculus in physics |
title_auth | Applications of fractional calculus in physics |
title_exact_search | Applications of fractional calculus in physics |
title_full | Applications of fractional calculus in physics editor, R. Hilfer |
title_fullStr | Applications of fractional calculus in physics editor, R. Hilfer |
title_full_unstemmed | Applications of fractional calculus in physics editor, R. Hilfer |
title_short | Applications of fractional calculus in physics |
title_sort | applications of fractional calculus in physics |
topic | Ableitung gebrochener Ordnung swd Aufsatzsammlung swd Integral gebrochener Ordnung swd Mathematische Physik swd SCIENCE / Physics / Mathematical & Computational bisacsh Fractional calculus fast Mathematical physics fast Mathematische Physik Fractional calculus Mathematical physics Ableitung gebrochener Ordnung (DE-588)4365956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Integral gebrochener Ordnung (DE-588)4365957-3 gnd |
topic_facet | Ableitung gebrochener Ordnung Aufsatzsammlung Integral gebrochener Ordnung Mathematische Physik SCIENCE / Physics / Mathematical & Computational Fractional calculus Mathematical physics |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=514007 |
work_keys_str_mv | AT hilferrudolf applicationsoffractionalcalculusinphysics AT hilferrudolf fractionalcalculusinphysics |