Spectral analysis of relativistic operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Imperial College Press
2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 177-182) and index 1. Preliminaries. 1.1. Linear operators. 1.2. Quadratic forms. 1.3. Spectra of self-adjoint operators. 1.4. Compact operators. 1.5. Fourier and Mellin transforms. 1.6. Sobolev spaces. 1.7. Inequalities. 1.8. CLR and related inequalities. 1.9. Lieb-Thirring inequalities -- 2. Operators. 2.1. The Dirac operator. 2.2. The quasi-relativistic operator. 2.3. The Brown-Ravenhall operator. 2.4. A unique continuation property -- 3. Spectra. 3.1. The Dirac operator. 3.2. The quasi-relativistic operator. 3.3. The Brown-Ravenhall operator. 3.4. The absence of embedded eigenvalues -- 4. Miscellany. 4.1. Stability of matter. 4.2. Eigenvalues of the operators D[symbol] and D[symbol]. 4.3. Zero modes of D[symbol] and P[symbol] in R[symbol], n[symbol]2. 4.4. Decay rates of weak solutions of [symbol]=0. 4.5. Sobolev and CLR inequalities for Pauli operators. 4.6. One-electron relativistic molecules. 4.7. Stability of matter in magnetic fields Over the last decade, there has been considerable interest and progress in determining the spectral properties of various operators that take relativistic effects into account, with important implications for mathematics and physics. Difficulties are encountered in many-particle problems due to the lack of semiboundedness of the Dirac operator, and this has led to the investigation of operators like those of Chandrasekhar-Herbst and Brown-Ravenhall, which are semibounded under appropriate circumstances. This book contains an up-to-date, comprehensive and self-contained analysis of the spectral properties of these operators, providing the tools for anyone working in this area. Another major feature is the work of the authors on zero modes, a topic which has important significance for the stability of matter and other physical problems. Up until now, these topics have been scattered throughout the literature, without a systematic and cohesive treatment. The book will report largely on the progress on these topics published since 1992 |
Beschreibung: | 1 Online-Ressource (xii, 186 pages) |
ISBN: | 1848162189 1848162197 9781848162181 9781848162198 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043102168 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2011 |||| o||u| ||||||eng d | ||
020 | |a 1848162189 |9 1-84816-218-9 | ||
020 | |a 1848162197 |c electronic bk. |9 1-84816-219-7 | ||
020 | |a 9781848162181 |9 978-1-84816-218-1 | ||
020 | |a 9781848162198 |c electronic bk. |9 978-1-84816-219-8 | ||
035 | |a (OCoLC)738434240 | ||
035 | |a (DE-599)BVBBV043102168 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.724 |2 22 | |
100 | 1 | |a Balinsky, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral analysis of relativistic operators |c A.A. Balinsky and W.D. Evans |
264 | 1 | |a London |b Imperial College Press |c 2011 | |
300 | |a 1 Online-Ressource (xii, 186 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 | ||
500 | |a Includes bibliographical references (pages 177-182) and index | ||
500 | |a 1. Preliminaries. 1.1. Linear operators. 1.2. Quadratic forms. 1.3. Spectra of self-adjoint operators. 1.4. Compact operators. 1.5. Fourier and Mellin transforms. 1.6. Sobolev spaces. 1.7. Inequalities. 1.8. CLR and related inequalities. 1.9. Lieb-Thirring inequalities -- 2. Operators. 2.1. The Dirac operator. 2.2. The quasi-relativistic operator. 2.3. The Brown-Ravenhall operator. 2.4. A unique continuation property -- 3. Spectra. 3.1. The Dirac operator. 3.2. The quasi-relativistic operator. 3.3. The Brown-Ravenhall operator. 3.4. The absence of embedded eigenvalues -- 4. Miscellany. 4.1. Stability of matter. 4.2. Eigenvalues of the operators D[symbol] and D[symbol]. 4.3. Zero modes of D[symbol] and P[symbol] in R[symbol], n[symbol]2. 4.4. Decay rates of weak solutions of [symbol]=0. 4.5. Sobolev and CLR inequalities for Pauli operators. 4.6. One-electron relativistic molecules. 4.7. Stability of matter in magnetic fields | ||
500 | |a Over the last decade, there has been considerable interest and progress in determining the spectral properties of various operators that take relativistic effects into account, with important implications for mathematics and physics. Difficulties are encountered in many-particle problems due to the lack of semiboundedness of the Dirac operator, and this has led to the investigation of operators like those of Chandrasekhar-Herbst and Brown-Ravenhall, which are semibounded under appropriate circumstances. This book contains an up-to-date, comprehensive and self-contained analysis of the spectral properties of these operators, providing the tools for anyone working in this area. Another major feature is the work of the authors on zero modes, a topic which has important significance for the stability of matter and other physical problems. Up until now, these topics have been scattered throughout the literature, without a systematic and cohesive treatment. The book will report largely on the progress on these topics published since 1992 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Science | |
650 | 4 | |a Physics | |
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Operator theory |2 fast | |
650 | 7 | |a Spectral theory (Mathematics) |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Evans, W. D. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028526360 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175513342705664 |
---|---|
any_adam_object | |
author | Balinsky, A. A. |
author_facet | Balinsky, A. A. |
author_role | aut |
author_sort | Balinsky, A. A. |
author_variant | a a b aa aab |
building | Verbundindex |
bvnumber | BV043102168 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)738434240 (DE-599)BVBBV043102168 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04494nmm a2200601zc 4500</leader><controlfield tag="001">BV043102168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848162189</subfield><subfield code="9">1-84816-218-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848162197</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-84816-219-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848162181</subfield><subfield code="9">978-1-84816-218-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848162198</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-84816-219-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)738434240</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043102168</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balinsky, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral analysis of relativistic operators</subfield><subfield code="c">A.A. Balinsky and W.D. Evans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Imperial College Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 186 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 177-182) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Preliminaries. 1.1. Linear operators. 1.2. Quadratic forms. 1.3. Spectra of self-adjoint operators. 1.4. Compact operators. 1.5. Fourier and Mellin transforms. 1.6. Sobolev spaces. 1.7. Inequalities. 1.8. CLR and related inequalities. 1.9. Lieb-Thirring inequalities -- 2. Operators. 2.1. The Dirac operator. 2.2. The quasi-relativistic operator. 2.3. The Brown-Ravenhall operator. 2.4. A unique continuation property -- 3. Spectra. 3.1. The Dirac operator. 3.2. The quasi-relativistic operator. 3.3. The Brown-Ravenhall operator. 3.4. The absence of embedded eigenvalues -- 4. Miscellany. 4.1. Stability of matter. 4.2. Eigenvalues of the operators D[symbol] and D[symbol]. 4.3. Zero modes of D[symbol] and P[symbol] in R[symbol], n[symbol]2. 4.4. Decay rates of weak solutions of [symbol]=0. 4.5. Sobolev and CLR inequalities for Pauli operators. 4.6. One-electron relativistic molecules. 4.7. Stability of matter in magnetic fields</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Over the last decade, there has been considerable interest and progress in determining the spectral properties of various operators that take relativistic effects into account, with important implications for mathematics and physics. Difficulties are encountered in many-particle problems due to the lack of semiboundedness of the Dirac operator, and this has led to the investigation of operators like those of Chandrasekhar-Herbst and Brown-Ravenhall, which are semibounded under appropriate circumstances. This book contains an up-to-date, comprehensive and self-contained analysis of the spectral properties of these operators, providing the tools for anyone working in this area. Another major feature is the work of the authors on zero modes, a topic which has important significance for the stability of matter and other physical problems. Up until now, these topics have been scattered throughout the literature, without a systematic and cohesive treatment. The book will report largely on the progress on these topics published since 1992</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operator theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Evans, W. D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028526360</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043102168 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:29Z |
institution | BVB |
isbn | 1848162189 1848162197 9781848162181 9781848162198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028526360 |
oclc_num | 738434240 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 186 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Imperial College Press |
record_format | marc |
spelling | Balinsky, A. A. Verfasser aut Spectral analysis of relativistic operators A.A. Balinsky and W.D. Evans London Imperial College Press 2011 1 Online-Ressource (xii, 186 pages) txt rdacontent c rdamedia cr rdacarrier Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002 Includes bibliographical references (pages 177-182) and index 1. Preliminaries. 1.1. Linear operators. 1.2. Quadratic forms. 1.3. Spectra of self-adjoint operators. 1.4. Compact operators. 1.5. Fourier and Mellin transforms. 1.6. Sobolev spaces. 1.7. Inequalities. 1.8. CLR and related inequalities. 1.9. Lieb-Thirring inequalities -- 2. Operators. 2.1. The Dirac operator. 2.2. The quasi-relativistic operator. 2.3. The Brown-Ravenhall operator. 2.4. A unique continuation property -- 3. Spectra. 3.1. The Dirac operator. 3.2. The quasi-relativistic operator. 3.3. The Brown-Ravenhall operator. 3.4. The absence of embedded eigenvalues -- 4. Miscellany. 4.1. Stability of matter. 4.2. Eigenvalues of the operators D[symbol] and D[symbol]. 4.3. Zero modes of D[symbol] and P[symbol] in R[symbol], n[symbol]2. 4.4. Decay rates of weak solutions of [symbol]=0. 4.5. Sobolev and CLR inequalities for Pauli operators. 4.6. One-electron relativistic molecules. 4.7. Stability of matter in magnetic fields Over the last decade, there has been considerable interest and progress in determining the spectral properties of various operators that take relativistic effects into account, with important implications for mathematics and physics. Difficulties are encountered in many-particle problems due to the lack of semiboundedness of the Dirac operator, and this has led to the investigation of operators like those of Chandrasekhar-Herbst and Brown-Ravenhall, which are semibounded under appropriate circumstances. This book contains an up-to-date, comprehensive and self-contained analysis of the spectral properties of these operators, providing the tools for anyone working in this area. Another major feature is the work of the authors on zero modes, a topic which has important significance for the stability of matter and other physical problems. Up until now, these topics have been scattered throughout the literature, without a systematic and cohesive treatment. The book will report largely on the progress on these topics published since 1992 Mathematics Science Physics MATHEMATICS / Functional Analysis bisacsh Operator theory fast Spectral theory (Mathematics) fast Mathematik Naturwissenschaft Operator theory Spectral theory (Mathematics) Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Operatortheorie (DE-588)4075665-8 s Spektraltheorie (DE-588)4116561-5 s 1\p DE-604 Evans, W. D. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Balinsky, A. A. Spectral analysis of relativistic operators Mathematics Science Physics MATHEMATICS / Functional Analysis bisacsh Operator theory fast Spectral theory (Mathematics) fast Mathematik Naturwissenschaft Operator theory Spectral theory (Mathematics) Spektraltheorie (DE-588)4116561-5 gnd Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4075665-8 |
title | Spectral analysis of relativistic operators |
title_auth | Spectral analysis of relativistic operators |
title_exact_search | Spectral analysis of relativistic operators |
title_full | Spectral analysis of relativistic operators A.A. Balinsky and W.D. Evans |
title_fullStr | Spectral analysis of relativistic operators A.A. Balinsky and W.D. Evans |
title_full_unstemmed | Spectral analysis of relativistic operators A.A. Balinsky and W.D. Evans |
title_short | Spectral analysis of relativistic operators |
title_sort | spectral analysis of relativistic operators |
topic | Mathematics Science Physics MATHEMATICS / Functional Analysis bisacsh Operator theory fast Spectral theory (Mathematics) fast Mathematik Naturwissenschaft Operator theory Spectral theory (Mathematics) Spektraltheorie (DE-588)4116561-5 gnd Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Mathematics Science Physics MATHEMATICS / Functional Analysis Operator theory Spectral theory (Mathematics) Mathematik Naturwissenschaft Spektraltheorie Operatortheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374880 |
work_keys_str_mv | AT balinskyaa spectralanalysisofrelativisticoperators AT evanswd spectralanalysisofrelativisticoperators |