Continued fractions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J.
World Scientific
c2006
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available |
Beschreibung: | 1 Online-Ressource (xii, 245 p.) |
ISBN: | 1281919632 9781281919632 9789812564771 9789812774682 9812564772 9812774688 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043093551 | ||
003 | DE-604 | ||
005 | 20180611 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2006 |||| o||u| ||||||eng d | ||
020 | |a 1281919632 |9 1-281-91963-2 | ||
020 | |a 9781281919632 |9 978-1-281-91963-2 | ||
020 | |a 9789812564771 |9 978-981-256-477-1 | ||
020 | |a 9789812774682 |9 978-981-277-468-2 | ||
020 | |a 9789812774682 |c electronic bk. |9 978-981-277-468-2 | ||
020 | |a 9812564772 |9 981-256-477-2 | ||
020 | |a 9812774688 |c electronic bk. |9 981-277-468-8 | ||
035 | |a (OCoLC)560445154 | ||
035 | |a (DE-599)BVBBV043093551 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.243 |2 22 | |
100 | 1 | |a Hensley, Doug, (Douglas Austin) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Continued fractions |c Doug Hensley |
264 | 1 | |a Hackensack, N.J. |b World Scientific |c c2006 | |
300 | |a 1 Online-Ressource (xii, 245 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available | ||
650 | 4 | |a Fracciones continuas | |
650 | 7 | |a MATHEMATICS / Infinity |2 bisacsh | |
650 | 7 | |a Continued fractions |2 fast | |
650 | 7 | |a Series |2 fast | |
650 | 4 | |a Continued fractions | |
650 | 4 | |a Series | |
650 | 0 | 7 | |a Kettenbruch |0 (DE-588)4030401-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kettenbruch |0 (DE-588)4030401-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028517743 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175496690270208 |
---|---|
any_adam_object | |
author | Hensley, Doug, (Douglas Austin) |
author_facet | Hensley, Doug, (Douglas Austin) |
author_role | aut |
author_sort | Hensley, Doug, (Douglas Austin) |
author_variant | d d a h dda ddah |
building | Verbundindex |
bvnumber | BV043093551 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)560445154 (DE-599)BVBBV043093551 |
dewey-full | 515.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.243 |
dewey-search | 515.243 |
dewey-sort | 3515.243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02985nmm a2200517zc 4500</leader><controlfield tag="001">BV043093551</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180611 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281919632</subfield><subfield code="9">1-281-91963-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281919632</subfield><subfield code="9">978-1-281-91963-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812564771</subfield><subfield code="9">978-981-256-477-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812774682</subfield><subfield code="9">978-981-277-468-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812774682</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-277-468-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812564772</subfield><subfield code="9">981-256-477-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812774688</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-277-468-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)560445154</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043093551</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.243</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hensley, Doug, (Douglas Austin)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continued fractions</subfield><subfield code="c">Doug Hensley</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackensack, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 245 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracciones continuas</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Infinity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Continued fractions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continued fractions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kettenbruch</subfield><subfield code="0">(DE-588)4030401-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kettenbruch</subfield><subfield code="0">(DE-588)4030401-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028517743</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043093551 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:13Z |
institution | BVB |
isbn | 1281919632 9781281919632 9789812564771 9789812774682 9812564772 9812774688 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028517743 |
oclc_num | 560445154 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 245 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific |
record_format | marc |
spelling | Hensley, Doug, (Douglas Austin) Verfasser aut Continued fractions Doug Hensley Hackensack, N.J. World Scientific c2006 1 Online-Ressource (xii, 245 p.) txt rdacontent c rdamedia cr rdacarrier The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available Fracciones continuas MATHEMATICS / Infinity bisacsh Continued fractions fast Series fast Continued fractions Series Kettenbruch (DE-588)4030401-2 gnd rswk-swf Kettenbruch (DE-588)4030401-2 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hensley, Doug, (Douglas Austin) Continued fractions Fracciones continuas MATHEMATICS / Infinity bisacsh Continued fractions fast Series fast Continued fractions Series Kettenbruch (DE-588)4030401-2 gnd |
subject_GND | (DE-588)4030401-2 |
title | Continued fractions |
title_auth | Continued fractions |
title_exact_search | Continued fractions |
title_full | Continued fractions Doug Hensley |
title_fullStr | Continued fractions Doug Hensley |
title_full_unstemmed | Continued fractions Doug Hensley |
title_short | Continued fractions |
title_sort | continued fractions |
topic | Fracciones continuas MATHEMATICS / Infinity bisacsh Continued fractions fast Series fast Continued fractions Series Kettenbruch (DE-588)4030401-2 gnd |
topic_facet | Fracciones continuas MATHEMATICS / Infinity Continued fractions Series Kettenbruch |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=210849 |
work_keys_str_mv | AT hensleydougdouglasaustin continuedfractions |