Compactification of Siegel moduli schemes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1985
|
Schriftenreihe: | London Mathematical Society lecture note series
107 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Originally presented as the author's thesis (Harvard University, 1984) Includes bibliographical references (p. 315-322) and index Introduction -- - 1 - Review of the Siegel moduli schemes -- - 2 - Analytic quotient construction of families of degenerating abelian varieties -- - 3 - Test families as co-ordinates at the boundary -- - 4 - Propagation of Tai's theorem to positive characteristics -- - 5 - Application to Siegel modular forms -- - Appendixes The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms |
Beschreibung: | 1 Online-Ressource (xvi, 326 p.) |
ISBN: | 0511721293 0521312531 1107087678 1107099900 9780511721298 9780521312530 9781107087675 9781107099906 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043092077 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1985 |||| o||u| ||||||eng d | ||
020 | |a 0511721293 |c electronic bk. |9 0-511-72129-3 | ||
020 | |a 0521312531 |9 0-521-31253-1 | ||
020 | |a 1107087678 |c electronic bk. |9 1-107-08767-8 | ||
020 | |a 1107099900 |c ebook |9 1-107-09990-0 | ||
020 | |a 9780511721298 |c electronic bk. |9 978-0-511-72129-8 | ||
020 | |a 9780521312530 |9 978-0-521-31253-0 | ||
020 | |a 9781107087675 |c electronic bk. |9 978-1-107-08767-5 | ||
020 | |a 9781107099906 |c ebook |9 978-1-107-09990-6 | ||
035 | |a (OCoLC)852899071 | ||
035 | |a (DE-599)BVBBV043092077 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.7 |2 22 | |
100 | 1 | |a Chai, Ching-Li |e Verfasser |4 aut | |
245 | 1 | 0 | |a Compactification of Siegel moduli schemes |c Ching-Li Chai |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1985 | |
300 | |a 1 Online-Ressource (xvi, 326 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series |v 107 | |
500 | |a Originally presented as the author's thesis (Harvard University, 1984) | ||
500 | |a Includes bibliographical references (p. 315-322) and index | ||
500 | |a Introduction -- - 1 - Review of the Siegel moduli schemes -- - 2 - Analytic quotient construction of families of degenerating abelian varieties -- - 3 - Test families as co-ordinates at the boundary -- - 4 - Propagation of Tai's theorem to positive characteristics -- - 5 - Application to Siegel modular forms -- - Appendixes | ||
500 | |a The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms | ||
650 | 4 | |a Modules, Théorie des | |
650 | 4 | |a Fonctions thêta | |
650 | 4 | |a Formes modulaires | |
650 | 7 | |a Moduli spaces |2 gtt | |
650 | 7 | |a Variedades abelianas |2 larpcal | |
650 | 7 | |a Geometria algébrica |2 larpcal | |
650 | 7 | |a Siegel-Modulfunktion |2 swd | |
650 | 7 | |a Kompaktifizierung |2 swd | |
650 | 7 | |a Siegel-Raum |2 swd | |
650 | 7 | |a Modulform |2 swd | |
650 | 7 | |a Thetafunktion |2 swd | |
650 | 7 | |a Modultheorie |2 swd | |
650 | 7 | |a Fonctions thêta |2 ram | |
650 | 7 | |a Modules, Théorie des |2 ram | |
650 | 7 | |a Formes modulaires |2 ram | |
650 | 7 | |a MATHEMATICS / Functional Analysis |2 bisacsh | |
650 | 7 | |a Forms, Modular |2 fast | |
650 | 7 | |a Functions, Theta |2 fast | |
650 | 7 | |a Moduli theory |2 fast | |
650 | 4 | |a Moduli theory | |
650 | 4 | |a Functions, Theta | |
650 | 4 | |a Forms, Modular | |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Siegel-Raum |0 (DE-588)4181229-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thetafunktion |0 (DE-588)4185175-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Siegel-Modulfunktion |0 (DE-588)4181232-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompaktifizierung |0 (DE-588)4164859-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Siegel-Modulfunktion |0 (DE-588)4181232-3 |D s |
689 | 0 | 1 | |a Kompaktifizierung |0 (DE-588)4164859-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Thetafunktion |0 (DE-588)4185175-4 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
689 | 4 | 0 | |a Siegel-Raum |0 (DE-588)4181229-3 |D s |
689 | 4 | |8 6\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028516269 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175493943001088 |
---|---|
any_adam_object | |
author | Chai, Ching-Li |
author_facet | Chai, Ching-Li |
author_role | aut |
author_sort | Chai, Ching-Li |
author_variant | c l c clc |
building | Verbundindex |
bvnumber | BV043092077 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)852899071 (DE-599)BVBBV043092077 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04982nmm a2201009zcb4500</leader><controlfield tag="001">BV043092077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511721293</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-511-72129-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521312531</subfield><subfield code="9">0-521-31253-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087678</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08767-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107099900</subfield><subfield code="c">ebook</subfield><subfield code="9">1-107-09990-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721298</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-511-72129-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521312530</subfield><subfield code="9">978-0-521-31253-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087675</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08767-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107099906</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-107-09990-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852899071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043092077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chai, Ching-Li</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compactification of Siegel moduli schemes</subfield><subfield code="c">Ching-Li Chai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 326 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">107</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally presented as the author's thesis (Harvard University, 1984)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 315-322) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- - 1 - Review of the Siegel moduli schemes -- - 2 - Analytic quotient construction of families of degenerating abelian varieties -- - 3 - Test families as co-ordinates at the boundary -- - 4 - Propagation of Tai's theorem to positive characteristics -- - 5 - Application to Siegel modular forms -- - Appendixes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions thêta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formes modulaires</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moduli spaces</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variedades abelianas</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Siegel-Modulfunktion</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kompaktifizierung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Siegel-Raum</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modulform</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thetafunktion</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions thêta</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modules, Théorie des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes modulaires</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Functional Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forms, Modular</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions, Theta</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moduli theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, Theta</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Modular</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Siegel-Raum</subfield><subfield code="0">(DE-588)4181229-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thetafunktion</subfield><subfield code="0">(DE-588)4185175-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Siegel-Modulfunktion</subfield><subfield code="0">(DE-588)4181232-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompaktifizierung</subfield><subfield code="0">(DE-588)4164859-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Siegel-Modulfunktion</subfield><subfield code="0">(DE-588)4181232-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kompaktifizierung</subfield><subfield code="0">(DE-588)4164859-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Thetafunktion</subfield><subfield code="0">(DE-588)4185175-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Siegel-Raum</subfield><subfield code="0">(DE-588)4181229-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028516269</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV043092077 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:10Z |
institution | BVB |
isbn | 0511721293 0521312531 1107087678 1107099900 9780511721298 9780521312530 9781107087675 9781107099906 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028516269 |
oclc_num | 852899071 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xvi, 326 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Chai, Ching-Li Verfasser aut Compactification of Siegel moduli schemes Ching-Li Chai Cambridge Cambridge University Press 1985 1 Online-Ressource (xvi, 326 p.) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 107 Originally presented as the author's thesis (Harvard University, 1984) Includes bibliographical references (p. 315-322) and index Introduction -- - 1 - Review of the Siegel moduli schemes -- - 2 - Analytic quotient construction of families of degenerating abelian varieties -- - 3 - Test families as co-ordinates at the boundary -- - 4 - Propagation of Tai's theorem to positive characteristics -- - 5 - Application to Siegel modular forms -- - Appendixes The Siegel moduli scheme classifies principally polarised abelian varieties and its compactification is an important result in arithmetic algebraic geometry. The main result of this monograph is to prove the existence of the toroidal compactification over Z (1/2). This result should have further applications and is presented here with sufficient background material to make the book suitable for seminar courses in algebraic geometry, algebraic number theory or automorphic forms Modules, Théorie des Fonctions thêta Formes modulaires Moduli spaces gtt Variedades abelianas larpcal Geometria algébrica larpcal Siegel-Modulfunktion swd Kompaktifizierung swd Siegel-Raum swd Modulform swd Thetafunktion swd Modultheorie swd Fonctions thêta ram Modules, Théorie des ram Formes modulaires ram MATHEMATICS / Functional Analysis bisacsh Forms, Modular fast Functions, Theta fast Moduli theory fast Moduli theory Functions, Theta Forms, Modular Modulform (DE-588)4128299-1 gnd rswk-swf Siegel-Raum (DE-588)4181229-3 gnd rswk-swf Thetafunktion (DE-588)4185175-4 gnd rswk-swf Siegel-Modulfunktion (DE-588)4181232-3 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Kompaktifizierung (DE-588)4164859-6 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Siegel-Modulfunktion (DE-588)4181232-3 s Kompaktifizierung (DE-588)4164859-6 s 2\p DE-604 Modulform (DE-588)4128299-1 s 3\p DE-604 Thetafunktion (DE-588)4185175-4 s 4\p DE-604 Modultheorie (DE-588)4170336-4 s 5\p DE-604 Siegel-Raum (DE-588)4181229-3 s 6\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chai, Ching-Li Compactification of Siegel moduli schemes Modules, Théorie des Fonctions thêta Formes modulaires Moduli spaces gtt Variedades abelianas larpcal Geometria algébrica larpcal Siegel-Modulfunktion swd Kompaktifizierung swd Siegel-Raum swd Modulform swd Thetafunktion swd Modultheorie swd Fonctions thêta ram Modules, Théorie des ram Formes modulaires ram MATHEMATICS / Functional Analysis bisacsh Forms, Modular fast Functions, Theta fast Moduli theory fast Moduli theory Functions, Theta Forms, Modular Modulform (DE-588)4128299-1 gnd Siegel-Raum (DE-588)4181229-3 gnd Thetafunktion (DE-588)4185175-4 gnd Siegel-Modulfunktion (DE-588)4181232-3 gnd Modultheorie (DE-588)4170336-4 gnd Kompaktifizierung (DE-588)4164859-6 gnd |
subject_GND | (DE-588)4128299-1 (DE-588)4181229-3 (DE-588)4185175-4 (DE-588)4181232-3 (DE-588)4170336-4 (DE-588)4164859-6 (DE-588)4113937-9 |
title | Compactification of Siegel moduli schemes |
title_auth | Compactification of Siegel moduli schemes |
title_exact_search | Compactification of Siegel moduli schemes |
title_full | Compactification of Siegel moduli schemes Ching-Li Chai |
title_fullStr | Compactification of Siegel moduli schemes Ching-Li Chai |
title_full_unstemmed | Compactification of Siegel moduli schemes Ching-Li Chai |
title_short | Compactification of Siegel moduli schemes |
title_sort | compactification of siegel moduli schemes |
topic | Modules, Théorie des Fonctions thêta Formes modulaires Moduli spaces gtt Variedades abelianas larpcal Geometria algébrica larpcal Siegel-Modulfunktion swd Kompaktifizierung swd Siegel-Raum swd Modulform swd Thetafunktion swd Modultheorie swd Fonctions thêta ram Modules, Théorie des ram Formes modulaires ram MATHEMATICS / Functional Analysis bisacsh Forms, Modular fast Functions, Theta fast Moduli theory fast Moduli theory Functions, Theta Forms, Modular Modulform (DE-588)4128299-1 gnd Siegel-Raum (DE-588)4181229-3 gnd Thetafunktion (DE-588)4185175-4 gnd Siegel-Modulfunktion (DE-588)4181232-3 gnd Modultheorie (DE-588)4170336-4 gnd Kompaktifizierung (DE-588)4164859-6 gnd |
topic_facet | Modules, Théorie des Fonctions thêta Formes modulaires Moduli spaces Variedades abelianas Geometria algébrica Siegel-Modulfunktion Kompaktifizierung Siegel-Raum Modulform Thetafunktion Modultheorie MATHEMATICS / Functional Analysis Forms, Modular Functions, Theta Moduli theory Hochschulschrift |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569284 |
work_keys_str_mv | AT chaichingli compactificationofsiegelmodulischemes |