Skew fields: theory of general division rings
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York
Cambridge University Press
1995
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
v. 57 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references and indexes From the preface to Skew Field Constructions -- 1. Rings and their fields of fractions -- 2. Skew polynomial rings and power series rings -- 3. Finite skew field extensions and applications -- 4. Localization -- 5. Coproducts of fields -- 6. General skew fields -- 7. Rational relations and rational identities -- 8. Equations and singularities -- 9. Valuations and orderings on skew fields Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G.M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background |
Beschreibung: | 1 Online-Ressource (xv, 500 p.) |
ISBN: | 0521432170 1107088402 9780521432177 9781107088405 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043091296 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1995 |||| o||u| ||||||eng d | ||
020 | |a 0521432170 |9 0-521-43217-0 | ||
020 | |a 1107088402 |c electronic bk. |9 1-107-08840-2 | ||
020 | |a 9780521432177 |9 978-0-521-43217-7 | ||
020 | |a 9781107088405 |c electronic bk. |9 978-1-107-08840-5 | ||
035 | |a (OCoLC)852898541 | ||
035 | |a (DE-599)BVBBV043091296 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.3 |2 22 | |
100 | 1 | |a Cohn, P. M., (Paul Moritz) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Skew fields |b theory of general division rings |c P.M. Cohn |
264 | 1 | |a New York |b Cambridge University Press |c 1995 | |
300 | |a 1 Online-Ressource (xv, 500 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v v. 57 | |
500 | |a Includes bibliographical references and indexes | ||
500 | |a From the preface to Skew Field Constructions -- 1. Rings and their fields of fractions -- 2. Skew polynomial rings and power series rings -- 3. Finite skew field extensions and applications -- 4. Localization -- 5. Coproducts of fields -- 6. General skew fields -- 7. Rational relations and rational identities -- 8. Equations and singularities -- 9. Valuations and orderings on skew fields | ||
500 | |a Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G.M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples | ||
500 | |a The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background | ||
650 | 7 | |a Corps gauches |2 ram | |
650 | 7 | |a Corps algébriques |2 ram | |
650 | 7 | |a Lichamen (wiskunde) |2 gtt | |
650 | 7 | |a Ringen (wiskunde) |2 gtt | |
650 | 4 | |a Corps gauches | |
650 | 4 | |a Corps algébriques | |
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a Algebraic fields |2 fast | |
650 | 7 | |a Division rings |2 fast | |
650 | 4 | |a Division rings | |
650 | 4 | |a Algebraic fields | |
650 | 0 | 7 | |a Schiefkörper |0 (DE-588)4052359-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schiefkörper |0 (DE-588)4052359-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028515488 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175492522180608 |
---|---|
any_adam_object | |
author | Cohn, P. M., (Paul Moritz) |
author_facet | Cohn, P. M., (Paul Moritz) |
author_role | aut |
author_sort | Cohn, P. M., (Paul Moritz) |
author_variant | p m p m c pmpm pmpmc |
building | Verbundindex |
bvnumber | BV043091296 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)852898541 (DE-599)BVBBV043091296 |
dewey-full | 512/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.3 |
dewey-search | 512/.3 |
dewey-sort | 3512 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04320nmm a2200589zcb4500</leader><controlfield tag="001">BV043091296</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521432170</subfield><subfield code="9">0-521-43217-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088402</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08840-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521432177</subfield><subfield code="9">978-0-521-43217-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088405</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08840-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852898541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043091296</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohn, P. M., (Paul Moritz)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Skew fields</subfield><subfield code="b">theory of general division rings</subfield><subfield code="c">P.M. Cohn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 500 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">v. 57</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From the preface to Skew Field Constructions -- 1. Rings and their fields of fractions -- 2. Skew polynomial rings and power series rings -- 3. Finite skew field extensions and applications -- 4. Localization -- 5. Coproducts of fields -- 6. General skew fields -- 7. Rational relations and rational identities -- 8. Equations and singularities -- 9. Valuations and orderings on skew fields</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G.M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps gauches</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps algébriques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lichamen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ringen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corps gauches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corps algébriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic fields</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Division rings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Division rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schiefkörper</subfield><subfield code="0">(DE-588)4052359-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028515488</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043091296 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:09Z |
institution | BVB |
isbn | 0521432170 1107088402 9780521432177 9781107088405 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028515488 |
oclc_num | 852898541 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 500 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Cohn, P. M., (Paul Moritz) Verfasser aut Skew fields theory of general division rings P.M. Cohn New York Cambridge University Press 1995 1 Online-Ressource (xv, 500 p.) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications v. 57 Includes bibliographical references and indexes From the preface to Skew Field Constructions -- 1. Rings and their fields of fractions -- 2. Skew polynomial rings and power series rings -- 3. Finite skew field extensions and applications -- 4. Localization -- 5. Coproducts of fields -- 6. General skew fields -- 7. Rational relations and rational identities -- 8. Equations and singularities -- 9. Valuations and orderings on skew fields Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G.M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background Corps gauches ram Corps algébriques ram Lichamen (wiskunde) gtt Ringen (wiskunde) gtt Corps gauches Corps algébriques MATHEMATICS / Algebra / Intermediate bisacsh Algebraic fields fast Division rings fast Division rings Algebraic fields Schiefkörper (DE-588)4052359-7 gnd rswk-swf Schiefkörper (DE-588)4052359-7 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohn, P. M., (Paul Moritz) Skew fields theory of general division rings Corps gauches ram Corps algébriques ram Lichamen (wiskunde) gtt Ringen (wiskunde) gtt Corps gauches Corps algébriques MATHEMATICS / Algebra / Intermediate bisacsh Algebraic fields fast Division rings fast Division rings Algebraic fields Schiefkörper (DE-588)4052359-7 gnd |
subject_GND | (DE-588)4052359-7 |
title | Skew fields theory of general division rings |
title_auth | Skew fields theory of general division rings |
title_exact_search | Skew fields theory of general division rings |
title_full | Skew fields theory of general division rings P.M. Cohn |
title_fullStr | Skew fields theory of general division rings P.M. Cohn |
title_full_unstemmed | Skew fields theory of general division rings P.M. Cohn |
title_short | Skew fields |
title_sort | skew fields theory of general division rings |
title_sub | theory of general division rings |
topic | Corps gauches ram Corps algébriques ram Lichamen (wiskunde) gtt Ringen (wiskunde) gtt Corps gauches Corps algébriques MATHEMATICS / Algebra / Intermediate bisacsh Algebraic fields fast Division rings fast Division rings Algebraic fields Schiefkörper (DE-588)4052359-7 gnd |
topic_facet | Corps gauches Corps algébriques Lichamen (wiskunde) Ringen (wiskunde) MATHEMATICS / Algebra / Intermediate Algebraic fields Division rings Schiefkörper |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569375 |
work_keys_str_mv | AT cohnpmpaulmoritz skewfieldstheoryofgeneraldivisionrings |