An algebraic introduction to K-theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK
Cambridge University Press
2002
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
v. 87 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (p. 661-669) and index "The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket Part I - Groups of Modules: K[subscript 0] - 15 -- - Chapter 1 - Free Modules - 17 -- - 1A - Bases - 17 -- - 1B - Matrix Representations - 26 -- - 1C - Absence of Dimension - 38 -- - Chapter 2 - Projective Modules - 43 -- - 2A - Direct Summands - 43 -- - 2B - Summands of Free Modules - 51 -- - Chapter 3 - Grothendieck Groups - 57 -- - 3A - Semigroups of Isomorphism Classes - 57 -- - 3B - Semigroups to Groups - 71 -- - 3C - Grothendieck Groups - 83 -- - 3D - Resolutions - 95 -- - Chapter 4 - Stability for Projective Modules - 104 -- - 4A - Adding Copies of R - 104 -- - 4B - Stably Free Modules - 108 -- - 4C - When Stably Free Modules Are Free - 113 -- - 4D - Stable Rank - 120 -- - 4E - Dimensions of a Ring - 128 -- - Chapter 5 - Multiplying Modules - 133 -- - 5A - Semirings - 133 -- - 5B - Burnside Rings - 135 -- - 5C - Tensor Products of Modules - 141 -- - Chapter 6 - Change of Rings - 160 -- - 6A - K[subscript 0] of Related Rings - 160 -- - 6B - G[subscript 0] of Related Rings - 169 -- - 6C - K[subscript 0] as a Functor - 174 -- - 6D - The Jacobson Radical - 178 -- - 6E - Localization - 185 -- - Part II - Sources of K[subscript 0] - 203 -- - Chapter 7 - Number Theory - 205 -- - 7A - Algebraic Integers - 205 -- - 7B - Dedekind Domains - 212 -- - 7C - Ideal Class Groups - 224 -- - 7D - Extensions and Norms - 230 -- - 7E - K[subscript 0] and G[subscript 0] of Dedekind Domains - 242 -- - Chapter 8 - Group Representation Theory - 252 -- - 8A - Linear Representations - 252 -- - 8B - Representing Finite Groups Over Fields - 265 -- - 8C - Semisimple Rings - 277 -- - 8D - Characters - 300 -- - Part III - Groups of Matrices: K[subscript 1] - 317 -- - Chapter 9 - Definition of K[subscript 1] - 319 -- - 9A - Elementary Matrices - 319 -- - 9B - Commutators and K[subscript 1](R) - 322 -- - 9C - Determinants - 328 -- - 9D - The Bass K[subscript 1] of a Category - 333 -- - Chapter 10 - Stability for K[subscript 1](R) - 342 -- - 10A - Surjective Stability - 343 -- - 10B - Injective Stability - 348 -- - Chapter 11 - Relative K[subscript 1] - 357 -- - 11A - Congruence Subgroups of GL[subscript n](R) - 357 -- - 11B - Congruence Subgroups of SL[subscript n](R) - 369 -- - 11C - Mennicke Symbols - 374 -- - Part IV - Relations Among Matrices: K[subscript 2] - 399 -- - Chapter 12 - K[subscript 2](R) and Steinberg Symbols - 401 -- - 12A - Definition and Properties of K[subscript 2](R) - 401 -- - 12B - Elements of St(R) and K[subscript 2](R) - 413 -- - Chapter 13 - Exact Sequences - 430 -- - 13A - The Relative Sequence - 431 -- - 13B - Excision and the Mayer-Vietoris Sequence - 456 -- - 13C - The Localization Sequence - 481 -- - Chapter 14 - Universal Algebras - 488 -- - 14A - Presentation of Algebras - 489 -- - 14B - Graded Rings - 493 -- - 14C - The Tensor Algebra - 497 -- - 14D - Symmetric and Exterior Algebras - 505 -- - 14E - The Milnor Ring - 518 -- - 14F - Tame Symbols - 534 -- - 14G - Norms on Milnor K-Theory - 547 -- - 14H - Matsumoto's Theorem - 557 -- - Part V - Sources of K[subscript 2] - 567 -- - Chapter 15 - Symbols in Arithmetic - 569 -- - 15A - Hilbert Symbols - 569 -- - 15B - Metric Completion of Fields - 572 -- - 15C - The p-Adic Numbers and Quadratic Reciprocity - 580 -- - 15D - Local Fields and Norm Residue Symbols - 595 -- - Chapter 16 - Brauer Groups - 610 -- - 16A - The Brauer Group of a Field - 610 -- - 16B - Splitting Fields - 623 -- - 16C - Twisted Group Rings - 629 -- - 16D - The K[subscript 2] Connection - 636 -- - A - Sets, Classes, Functions - 645 -- - B - Chain Conditions, Composition Series - 647 |
Beschreibung: | 1 Online-Ressource (xiv, 676 p.) |
ISBN: | 0521800781 1107089522 1107326001 9780521800785 9781107089525 9781107326002 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043081061 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2002 |||| o||u| ||||||eng d | ||
020 | |a 0521800781 |9 0-521-80078-1 | ||
020 | |a 1107089522 |c electronic bk. |9 1-107-08952-2 | ||
020 | |a 1107326001 |c electronic bk. |9 1-107-32600-1 | ||
020 | |a 9780521800785 |9 978-0-521-80078-5 | ||
020 | |a 9781107089525 |c electronic bk. |9 978-1-107-08952-5 | ||
020 | |a 9781107326002 |c electronic bk. |9 978-1-107-32600-2 | ||
035 | |a (OCoLC)847527208 | ||
035 | |a (DE-599)BVBBV043081061 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.55 |2 22 | |
100 | 1 | |a Magurn, Bruce A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An algebraic introduction to K-theory |c Bruce A. Magurn |
264 | 1 | |a Cambridge, UK |b Cambridge University Press |c 2002 | |
300 | |a 1 Online-Ressource (xiv, 676 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v v. 87 | |
500 | |a Includes bibliographical references (p. 661-669) and index | ||
500 | |a "The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry | ||
500 | |a The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has | ||
500 | |a Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket | ||
500 | |a Part I - Groups of Modules: K[subscript 0] - 15 -- - Chapter 1 - Free Modules - 17 -- - 1A - Bases - 17 -- - 1B - Matrix Representations - 26 -- - 1C - Absence of Dimension - 38 -- - Chapter 2 - Projective Modules - 43 -- - 2A - Direct Summands - 43 -- - 2B - Summands of Free Modules - 51 -- - Chapter 3 - Grothendieck Groups - 57 -- - 3A - Semigroups of Isomorphism Classes - 57 -- - 3B - Semigroups to Groups - 71 -- - 3C - Grothendieck Groups - 83 -- - 3D - Resolutions - 95 -- - Chapter 4 - Stability for Projective Modules - 104 -- - 4A - Adding Copies of R - 104 -- - 4B - Stably Free Modules - 108 -- - 4C - When Stably Free Modules Are Free - 113 -- - 4D - Stable Rank - 120 -- - 4E - Dimensions of a Ring - 128 -- - Chapter 5 - Multiplying Modules - 133 -- - 5A - Semirings - 133 -- - 5B - Burnside Rings - 135 -- - 5C - Tensor Products of Modules - 141 -- - Chapter 6 - Change of Rings - 160 -- - 6A - K[subscript 0] of Related Rings - 160 -- - 6B - G[subscript 0] of Related Rings | ||
500 | |a - 169 -- - 6C - K[subscript 0] as a Functor - 174 -- - 6D - The Jacobson Radical - 178 -- - 6E - Localization - 185 -- - Part II - Sources of K[subscript 0] - 203 -- - Chapter 7 - Number Theory - 205 -- - 7A - Algebraic Integers - 205 -- - 7B - Dedekind Domains - 212 -- - 7C - Ideal Class Groups - 224 -- - 7D - Extensions and Norms - 230 -- - 7E - K[subscript 0] and G[subscript 0] of Dedekind Domains - 242 -- - Chapter 8 - Group Representation Theory - 252 -- - 8A - Linear Representations - 252 -- - 8B - Representing Finite Groups Over Fields - 265 -- - 8C - Semisimple Rings - 277 -- - 8D - Characters - 300 -- - Part III - Groups of Matrices: K[subscript 1] - 317 -- - Chapter 9 - Definition of K[subscript 1] - 319 -- - 9A - Elementary Matrices - 319 -- - 9B - Commutators and K[subscript 1](R) - 322 -- - 9C - Determinants - 328 -- - 9D - The Bass K[subscript 1] of a Category - 333 -- - Chapter 10 - Stability for K[subscript 1](R) - 342 -- - 10A - Surjective Stability - 343 -- - 10B | ||
500 | |a - Injective Stability - 348 -- - Chapter 11 - Relative K[subscript 1] - 357 -- - 11A - Congruence Subgroups of GL[subscript n](R) - 357 -- - 11B - Congruence Subgroups of SL[subscript n](R) - 369 -- - 11C - Mennicke Symbols - 374 -- - Part IV - Relations Among Matrices: K[subscript 2] - 399 -- - Chapter 12 - K[subscript 2](R) and Steinberg Symbols - 401 -- - 12A - Definition and Properties of K[subscript 2](R) - 401 -- - 12B - Elements of St(R) and K[subscript 2](R) - 413 -- - Chapter 13 - Exact Sequences - 430 -- - 13A - The Relative Sequence - 431 -- - 13B - Excision and the Mayer-Vietoris Sequence - 456 -- - 13C - The Localization Sequence - 481 -- - Chapter 14 - Universal Algebras - 488 -- - 14A - Presentation of Algebras - 489 -- - 14B - Graded Rings - 493 -- - 14C - The Tensor Algebra - 497 -- - 14D - Symmetric and Exterior Algebras - 505 -- - 14E - The Milnor Ring - 518 -- - 14F - Tame Symbols - 534 -- - 14G - Norms on Milnor K-Theory - 547 -- - 14H - Matsumoto's Theorem | ||
500 | |a - 557 -- - Part V - Sources of K[subscript 2] - 567 -- - Chapter 15 - Symbols in Arithmetic - 569 -- - 15A - Hilbert Symbols - 569 -- - 15B - Metric Completion of Fields - 572 -- - 15C - The p-Adic Numbers and Quadratic Reciprocity - 580 -- - 15D - Local Fields and Norm Residue Symbols - 595 -- - Chapter 16 - Brauer Groups - 610 -- - 16A - The Brauer Group of a Field - 610 -- - 16B - Splitting Fields - 623 -- - 16C - Twisted Group Rings - 629 -- - 16D - The K[subscript 2] Connection - 636 -- - A - Sets, Classes, Functions - 645 -- - B - Chain Conditions, Composition Series - 647 | ||
650 | 4 | |a K-théorie | |
650 | 7 | |a Algebraische K-Theorie |2 swd | |
650 | 7 | |a MATHEMATICS / Algebra / Linear |2 bisacsh | |
650 | 7 | |a K-theory |2 fast | |
650 | 4 | |a K-theory | |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028505252 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175473345822720 |
---|---|
any_adam_object | |
author | Magurn, Bruce A. |
author_facet | Magurn, Bruce A. |
author_role | aut |
author_sort | Magurn, Bruce A. |
author_variant | b a m ba bam |
building | Verbundindex |
bvnumber | BV043081061 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)847527208 (DE-599)BVBBV043081061 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06368nmm a2200589zcb4500</leader><controlfield tag="001">BV043081061</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521800781</subfield><subfield code="9">0-521-80078-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089522</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08952-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107326001</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-32600-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521800785</subfield><subfield code="9">978-0-521-80078-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089525</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08952-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107326002</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-32600-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)847527208</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043081061</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Magurn, Bruce A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An algebraic introduction to K-theory</subfield><subfield code="c">Bruce A. Magurn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, UK</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 676 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">v. 87</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 661-669) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part I - Groups of Modules: K[subscript 0] - 15 -- - Chapter 1 - Free Modules - 17 -- - 1A - Bases - 17 -- - 1B - Matrix Representations - 26 -- - 1C - Absence of Dimension - 38 -- - Chapter 2 - Projective Modules - 43 -- - 2A - Direct Summands - 43 -- - 2B - Summands of Free Modules - 51 -- - Chapter 3 - Grothendieck Groups - 57 -- - 3A - Semigroups of Isomorphism Classes - 57 -- - 3B - Semigroups to Groups - 71 -- - 3C - Grothendieck Groups - 83 -- - 3D - Resolutions - 95 -- - Chapter 4 - Stability for Projective Modules - 104 -- - 4A - Adding Copies of R - 104 -- - 4B - Stably Free Modules - 108 -- - 4C - When Stably Free Modules Are Free - 113 -- - 4D - Stable Rank - 120 -- - 4E - Dimensions of a Ring - 128 -- - Chapter 5 - Multiplying Modules - 133 -- - 5A - Semirings - 133 -- - 5B - Burnside Rings - 135 -- - 5C - Tensor Products of Modules - 141 -- - Chapter 6 - Change of Rings - 160 -- - 6A - K[subscript 0] of Related Rings - 160 -- - 6B - G[subscript 0] of Related Rings</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 169 -- - 6C - K[subscript 0] as a Functor - 174 -- - 6D - The Jacobson Radical - 178 -- - 6E - Localization - 185 -- - Part II - Sources of K[subscript 0] - 203 -- - Chapter 7 - Number Theory - 205 -- - 7A - Algebraic Integers - 205 -- - 7B - Dedekind Domains - 212 -- - 7C - Ideal Class Groups - 224 -- - 7D - Extensions and Norms - 230 -- - 7E - K[subscript 0] and G[subscript 0] of Dedekind Domains - 242 -- - Chapter 8 - Group Representation Theory - 252 -- - 8A - Linear Representations - 252 -- - 8B - Representing Finite Groups Over Fields - 265 -- - 8C - Semisimple Rings - 277 -- - 8D - Characters - 300 -- - Part III - Groups of Matrices: K[subscript 1] - 317 -- - Chapter 9 - Definition of K[subscript 1] - 319 -- - 9A - Elementary Matrices - 319 -- - 9B - Commutators and K[subscript 1](R) - 322 -- - 9C - Determinants - 328 -- - 9D - The Bass K[subscript 1] of a Category - 333 -- - Chapter 10 - Stability for K[subscript 1](R) - 342 -- - 10A - Surjective Stability - 343 -- - 10B</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Injective Stability - 348 -- - Chapter 11 - Relative K[subscript 1] - 357 -- - 11A - Congruence Subgroups of GL[subscript n](R) - 357 -- - 11B - Congruence Subgroups of SL[subscript n](R) - 369 -- - 11C - Mennicke Symbols - 374 -- - Part IV - Relations Among Matrices: K[subscript 2] - 399 -- - Chapter 12 - K[subscript 2](R) and Steinberg Symbols - 401 -- - 12A - Definition and Properties of K[subscript 2](R) - 401 -- - 12B - Elements of St(R) and K[subscript 2](R) - 413 -- - Chapter 13 - Exact Sequences - 430 -- - 13A - The Relative Sequence - 431 -- - 13B - Excision and the Mayer-Vietoris Sequence - 456 -- - 13C - The Localization Sequence - 481 -- - Chapter 14 - Universal Algebras - 488 -- - 14A - Presentation of Algebras - 489 -- - 14B - Graded Rings - 493 -- - 14C - The Tensor Algebra - 497 -- - 14D - Symmetric and Exterior Algebras - 505 -- - 14E - The Milnor Ring - 518 -- - 14F - Tame Symbols - 534 -- - 14G - Norms on Milnor K-Theory - 547 -- - 14H - Matsumoto's Theorem</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 557 -- - Part V - Sources of K[subscript 2] - 567 -- - Chapter 15 - Symbols in Arithmetic - 569 -- - 15A - Hilbert Symbols - 569 -- - 15B - Metric Completion of Fields - 572 -- - 15C - The p-Adic Numbers and Quadratic Reciprocity - 580 -- - 15D - Local Fields and Norm Residue Symbols - 595 -- - Chapter 16 - Brauer Groups - 610 -- - 16A - The Brauer Group of a Field - 610 -- - 16B - Splitting Fields - 623 -- - 16C - Twisted Group Rings - 629 -- - 16D - The K[subscript 2] Connection - 636 -- - A - Sets, Classes, Functions - 645 -- - B - Chain Conditions, Composition Series - 647</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-théorie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Linear</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">K-theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028505252</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043081061 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:51Z |
institution | BVB |
isbn | 0521800781 1107089522 1107326001 9780521800785 9781107089525 9781107326002 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028505252 |
oclc_num | 847527208 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiv, 676 p.) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Magurn, Bruce A. Verfasser aut An algebraic introduction to K-theory Bruce A. Magurn Cambridge, UK Cambridge University Press 2002 1 Online-Ressource (xiv, 676 p.) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications v. 87 Includes bibliographical references (p. 661-669) and index "The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year."--Jacket Part I - Groups of Modules: K[subscript 0] - 15 -- - Chapter 1 - Free Modules - 17 -- - 1A - Bases - 17 -- - 1B - Matrix Representations - 26 -- - 1C - Absence of Dimension - 38 -- - Chapter 2 - Projective Modules - 43 -- - 2A - Direct Summands - 43 -- - 2B - Summands of Free Modules - 51 -- - Chapter 3 - Grothendieck Groups - 57 -- - 3A - Semigroups of Isomorphism Classes - 57 -- - 3B - Semigroups to Groups - 71 -- - 3C - Grothendieck Groups - 83 -- - 3D - Resolutions - 95 -- - Chapter 4 - Stability for Projective Modules - 104 -- - 4A - Adding Copies of R - 104 -- - 4B - Stably Free Modules - 108 -- - 4C - When Stably Free Modules Are Free - 113 -- - 4D - Stable Rank - 120 -- - 4E - Dimensions of a Ring - 128 -- - Chapter 5 - Multiplying Modules - 133 -- - 5A - Semirings - 133 -- - 5B - Burnside Rings - 135 -- - 5C - Tensor Products of Modules - 141 -- - Chapter 6 - Change of Rings - 160 -- - 6A - K[subscript 0] of Related Rings - 160 -- - 6B - G[subscript 0] of Related Rings - 169 -- - 6C - K[subscript 0] as a Functor - 174 -- - 6D - The Jacobson Radical - 178 -- - 6E - Localization - 185 -- - Part II - Sources of K[subscript 0] - 203 -- - Chapter 7 - Number Theory - 205 -- - 7A - Algebraic Integers - 205 -- - 7B - Dedekind Domains - 212 -- - 7C - Ideal Class Groups - 224 -- - 7D - Extensions and Norms - 230 -- - 7E - K[subscript 0] and G[subscript 0] of Dedekind Domains - 242 -- - Chapter 8 - Group Representation Theory - 252 -- - 8A - Linear Representations - 252 -- - 8B - Representing Finite Groups Over Fields - 265 -- - 8C - Semisimple Rings - 277 -- - 8D - Characters - 300 -- - Part III - Groups of Matrices: K[subscript 1] - 317 -- - Chapter 9 - Definition of K[subscript 1] - 319 -- - 9A - Elementary Matrices - 319 -- - 9B - Commutators and K[subscript 1](R) - 322 -- - 9C - Determinants - 328 -- - 9D - The Bass K[subscript 1] of a Category - 333 -- - Chapter 10 - Stability for K[subscript 1](R) - 342 -- - 10A - Surjective Stability - 343 -- - 10B - Injective Stability - 348 -- - Chapter 11 - Relative K[subscript 1] - 357 -- - 11A - Congruence Subgroups of GL[subscript n](R) - 357 -- - 11B - Congruence Subgroups of SL[subscript n](R) - 369 -- - 11C - Mennicke Symbols - 374 -- - Part IV - Relations Among Matrices: K[subscript 2] - 399 -- - Chapter 12 - K[subscript 2](R) and Steinberg Symbols - 401 -- - 12A - Definition and Properties of K[subscript 2](R) - 401 -- - 12B - Elements of St(R) and K[subscript 2](R) - 413 -- - Chapter 13 - Exact Sequences - 430 -- - 13A - The Relative Sequence - 431 -- - 13B - Excision and the Mayer-Vietoris Sequence - 456 -- - 13C - The Localization Sequence - 481 -- - Chapter 14 - Universal Algebras - 488 -- - 14A - Presentation of Algebras - 489 -- - 14B - Graded Rings - 493 -- - 14C - The Tensor Algebra - 497 -- - 14D - Symmetric and Exterior Algebras - 505 -- - 14E - The Milnor Ring - 518 -- - 14F - Tame Symbols - 534 -- - 14G - Norms on Milnor K-Theory - 547 -- - 14H - Matsumoto's Theorem - 557 -- - Part V - Sources of K[subscript 2] - 567 -- - Chapter 15 - Symbols in Arithmetic - 569 -- - 15A - Hilbert Symbols - 569 -- - 15B - Metric Completion of Fields - 572 -- - 15C - The p-Adic Numbers and Quadratic Reciprocity - 580 -- - 15D - Local Fields and Norm Residue Symbols - 595 -- - Chapter 16 - Brauer Groups - 610 -- - 16A - The Brauer Group of a Field - 610 -- - 16B - Splitting Fields - 623 -- - 16C - Twisted Group Rings - 629 -- - 16D - The K[subscript 2] Connection - 636 -- - A - Sets, Classes, Functions - 645 -- - B - Chain Conditions, Composition Series - 647 K-théorie Algebraische K-Theorie swd MATHEMATICS / Algebra / Linear bisacsh K-theory fast K-theory K-Theorie (DE-588)4033335-8 gnd rswk-swf K-Theorie (DE-588)4033335-8 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Magurn, Bruce A. An algebraic introduction to K-theory K-théorie Algebraische K-Theorie swd MATHEMATICS / Algebra / Linear bisacsh K-theory fast K-theory K-Theorie (DE-588)4033335-8 gnd |
subject_GND | (DE-588)4033335-8 |
title | An algebraic introduction to K-theory |
title_auth | An algebraic introduction to K-theory |
title_exact_search | An algebraic introduction to K-theory |
title_full | An algebraic introduction to K-theory Bruce A. Magurn |
title_fullStr | An algebraic introduction to K-theory Bruce A. Magurn |
title_full_unstemmed | An algebraic introduction to K-theory Bruce A. Magurn |
title_short | An algebraic introduction to K-theory |
title_sort | an algebraic introduction to k theory |
topic | K-théorie Algebraische K-Theorie swd MATHEMATICS / Algebra / Linear bisacsh K-theory fast K-theory K-Theorie (DE-588)4033335-8 gnd |
topic_facet | K-théorie Algebraische K-Theorie MATHEMATICS / Algebra / Linear K-theory K-Theorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569371 |
work_keys_str_mv | AT magurnbrucea analgebraicintroductiontoktheory |