The golden ratio and Fibonacci numbers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ
World Scientific
©1997
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 153-155) and index In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate p |
Beschreibung: | 1 Online-Ressource (vii, 162 pages) |
ISBN: | 1281869953 9781281869951 9789812386304 9812386300 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043079873 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s1997 |||| o||u| ||||||eng d | ||
020 | |a 1281869953 |9 1-281-86995-3 | ||
020 | |a 9781281869951 |9 978-1-281-86995-1 | ||
020 | |a 9789812386304 |c electronic bk. |9 978-981-238-630-4 | ||
020 | |a 9812386300 |c electronic bk. |9 981-238-630-0 | ||
035 | |a (OCoLC)53194345 | ||
035 | |a (DE-599)BVBBV043079873 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.72 |2 22 | |
100 | 1 | |a Dunlap, R. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The golden ratio and Fibonacci numbers |c by Richard A. Dunlap |
264 | 1 | |a River Edge, NJ |b World Scientific |c ©1997 | |
300 | |a 1 Online-Ressource (vii, 162 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 153-155) and index | ||
500 | |a In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate p | ||
650 | 7 | |a MATHEMATICS / Number Theory |2 bisacsh | |
650 | 7 | |a Fibonacci numbers |2 fast | |
650 | 7 | |a Golden section |2 fast | |
650 | 4 | |a Golden section | |
650 | 4 | |a Fibonacci numbers | |
650 | 0 | 7 | |a Fibonacci-Folge |0 (DE-588)4249138-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Goldener Schnitt |0 (DE-588)4021529-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schnitt |g Mathematik |0 (DE-588)4458889-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schnitt |g Mathematik |0 (DE-588)4458889-6 |D s |
689 | 0 | 1 | |a Goldener Schnitt |0 (DE-588)4021529-5 |D s |
689 | 0 | 2 | |a Fibonacci-Folge |0 (DE-588)4249138-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028504065 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175471089287168 |
---|---|
any_adam_object | |
author | Dunlap, R. A. |
author_facet | Dunlap, R. A. |
author_role | aut |
author_sort | Dunlap, R. A. |
author_variant | r a d ra rad |
building | Verbundindex |
bvnumber | BV043079873 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)53194345 (DE-599)BVBBV043079873 |
dewey-full | 512/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.72 |
dewey-search | 512/.72 |
dewey-sort | 3512 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02801nmm a2200529zc 4500</leader><controlfield tag="001">BV043079873</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281869953</subfield><subfield code="9">1-281-86995-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281869951</subfield><subfield code="9">978-1-281-86995-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812386304</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-238-630-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812386300</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-238-630-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)53194345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043079873</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunlap, R. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The golden ratio and Fibonacci numbers</subfield><subfield code="c">by Richard A. Dunlap</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, NJ</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 162 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 153-155) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate p</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Number Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fibonacci numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Golden section</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Golden section</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fibonacci numbers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fibonacci-Folge</subfield><subfield code="0">(DE-588)4249138-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Goldener Schnitt</subfield><subfield code="0">(DE-588)4021529-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnitt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4458889-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schnitt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4458889-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Goldener Schnitt</subfield><subfield code="0">(DE-588)4021529-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fibonacci-Folge</subfield><subfield code="0">(DE-588)4249138-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028504065</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043079873 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:49Z |
institution | BVB |
isbn | 1281869953 9781281869951 9789812386304 9812386300 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028504065 |
oclc_num | 53194345 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (vii, 162 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | World Scientific |
record_format | marc |
spelling | Dunlap, R. A. Verfasser aut The golden ratio and Fibonacci numbers by Richard A. Dunlap River Edge, NJ World Scientific ©1997 1 Online-Ressource (vii, 162 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 153-155) and index In this invaluable book, the basic mathematical properties of the golden ratio and its occurrence in the dimensions of two- and three-dimensional figures with fivefold symmetry are discussed. In addition, the generation of the Fibonacci series and generalized Fibonacci series and their relationship to the golden ratio are presented. These concepts are applied to algorithms for searching and function minimization. The Fibonacci sequence is viewed as a one-dimensional aperiodic, lattice and these ideas are extended to two- and three-dimensional Penrose tilings and the concept of incommensurate p MATHEMATICS / Number Theory bisacsh Fibonacci numbers fast Golden section fast Golden section Fibonacci numbers Fibonacci-Folge (DE-588)4249138-1 gnd rswk-swf Goldener Schnitt (DE-588)4021529-5 gnd rswk-swf Schnitt Mathematik (DE-588)4458889-6 gnd rswk-swf Schnitt Mathematik (DE-588)4458889-6 s Goldener Schnitt (DE-588)4021529-5 s Fibonacci-Folge (DE-588)4249138-1 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dunlap, R. A. The golden ratio and Fibonacci numbers MATHEMATICS / Number Theory bisacsh Fibonacci numbers fast Golden section fast Golden section Fibonacci numbers Fibonacci-Folge (DE-588)4249138-1 gnd Goldener Schnitt (DE-588)4021529-5 gnd Schnitt Mathematik (DE-588)4458889-6 gnd |
subject_GND | (DE-588)4249138-1 (DE-588)4021529-5 (DE-588)4458889-6 |
title | The golden ratio and Fibonacci numbers |
title_auth | The golden ratio and Fibonacci numbers |
title_exact_search | The golden ratio and Fibonacci numbers |
title_full | The golden ratio and Fibonacci numbers by Richard A. Dunlap |
title_fullStr | The golden ratio and Fibonacci numbers by Richard A. Dunlap |
title_full_unstemmed | The golden ratio and Fibonacci numbers by Richard A. Dunlap |
title_short | The golden ratio and Fibonacci numbers |
title_sort | the golden ratio and fibonacci numbers |
topic | MATHEMATICS / Number Theory bisacsh Fibonacci numbers fast Golden section fast Golden section Fibonacci numbers Fibonacci-Folge (DE-588)4249138-1 gnd Goldener Schnitt (DE-588)4021529-5 gnd Schnitt Mathematik (DE-588)4458889-6 gnd |
topic_facet | MATHEMATICS / Number Theory Fibonacci numbers Golden section Fibonacci-Folge Goldener Schnitt Schnitt Mathematik |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=91449 |
work_keys_str_mv | AT dunlapra thegoldenratioandfibonaccinumbers |