Computational neuroanatomy: the methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
©2013
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | 6.3.3 Iterated Kernel Smoothing Includes bibliographical references (pages 367-398) and index Preface; Contents; 1. Statistical Preliminary; 1.1 General Linear Models; 1.2 Random Fields; 1.2.1 Covariance Functions; 1.2.2 Gaussian Random Fields; 1.2.3 Differentiation and Integration of Fields; 1.2.4 Statistical Inference on Fields; 1.3 Multiple Comparisons; 1.3.1 Bonferroni Correction; 1.3.2 Random Fields Theory; 1.3.3 Poisson Clumping Heuristic; 1.3.4 Euler Characteristic Method; 1.3.5 Intrinsic Volume; 1.3.6 Euler Characteristic Density; 1.4 Statistical Power Analysis; 1.4.1 Statistical Power at a Voxel; 1.4.2 Statistical Power under Multiple Comparisons 2. Deformation-Based Morphometry2.1 Image Registration; 2.2 Deformation-Based Morphometry; 2.3 Displacement Vector Fields; 2.3.1 Dynamic Model on Displacement; 2.3.2 Local Inference via Hotelling's T2-Field; 2.3.3 Detecting Local Brain Growth; 2.4 Global Inference via Integral Statistic; 2.4.1 Karhunen-Lo eve Expansion; 2.4.2 Mercer's Theorem; 2.4.3 Integral Statistic on Displacement; 3. Tensor-Based Morphometry; 3.1 Jacobian Determinant; 3.2 Distributional Assumptions; 3.3 Local Volume Changes; 3.4 Longitudinal Modeling; 3.4.1 Normal Brain Development in Children 3.5 Global Inference via Divergence Theorem3.6 Second Order Tensor Fields; 3.6.1 Membrane Spline Energy; 3.6.2 Vorticity Tensor Fields; 3.6.3 Generalized Variance Field; 4. Voxel-Based Morphometry; 4.1 Image Segmentation; 4.1.1 Mumford-Shah Model; 4.1.2 Level Sets; 4.1.3 Active Contours; 4.1.4 Deformable Surface Models; 4.1.5 Thin-Plate Spline Thresholding; 4.2 Mixture Models; 4.2.1 Bayesian Segmentation; 4.2.2 Mixture Models; 4.2.3 Expectation Maximization Algorithm; 4.2.4 Two Components Gaussian Mixtures; 4.3 Voxel-Based Morphometry; 4.3.1 ROI Volume Estimation in VBM. 4.3.2 Limitations of Witelson Partition4.3.3 General Linear Models on Tissue Densities; 4.3.4 2D VBM Applied to Corpus Callosum; 5. Geometry of Cortical Manifolds; 5.1 Surface Parameterization; 5.1.1 B-Spline Parameterization; 5.1.2 B-Spline Curves; 5.1.3 Quadratic Parameterization; 5.1.4 Fourier Descriptors; 5.2 Surface Normals and Curvatures; 5.2.1 Surface Normals; 5.2.2 Gaussian and Mean Curvatures; 5.2.3 Curvatures of Polynomial Surfaces; 5.3 Laplace-Beltrami Operator; 5.3.1 Eigenfunctions of Laplace-Beltrami Operator; 5.3.2 Multiplicity of Eigenfunctions 5.3.3 Laplace-Beltrami Shape Descriptors5.3.4 Second Eigenfunctions; 5.3.5 Dirichlet Energy; 5.3.6 Fiedler's Vector; 5.4 Finite Element Methods; 5.4.1 Pieacewise Linear Functions; 5.4.2 Mass and Stiffness Matrices; 6. Smoothing on Cortical Manifolds; 6.1 Gaussian Kernel Smoothing; 6.1.1 Isotropic Gaussian Kernel; 6.1.2 Anisotropic Gaussian Kernel; 6.2 Diffusion Smoothing; 6.2.1 Diffusion in Euclidean Space; 6.2.2 Diffusion in 1D; 6.2.3 Diffusion on Triangular Mesh; 6.2.4 Finite Difference Scheme; 6.3 Heat Kernel Smoothing; 6.3.1 Heat Kernel; 6.3.2 Heat Kernel Smoothing Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip |
Beschreibung: | 1 Online-Ressource (xv, 403 pages) |
ISBN: | 1299133061 9781299133068 9789814335430 9789814335447 9814335444 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043073786 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 |||| o||u| ||||||eng d | ||
020 | |a 1299133061 |c MyiLibrary |9 1-299-13306-1 | ||
020 | |a 9781299133068 |c MyiLibrary |9 978-1-299-13306-8 | ||
020 | |a 9789814335430 |9 978-981-4335-43-0 | ||
020 | |a 9789814335447 |c electronic bk. |9 978-981-4335-44-7 | ||
020 | |a 9814335444 |c electronic bk. |9 981-4335-44-4 | ||
035 | |a (OCoLC)828792986 | ||
035 | |a (DE-599)BVBBV043073786 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 611.8015 | |
084 | |a WC 7700 |0 (DE-625)148144: |2 rvk | ||
084 | |a WW 2200 |0 (DE-625)158906:13423 |2 rvk | ||
100 | 1 | |a Chung, Moo K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Computational neuroanatomy |b the methods |c Moo K. Chung |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c ©2013 | |
300 | |a 1 Online-Ressource (xv, 403 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a 6.3.3 Iterated Kernel Smoothing | ||
500 | |a Includes bibliographical references (pages 367-398) and index | ||
500 | |a Preface; Contents; 1. Statistical Preliminary; 1.1 General Linear Models; 1.2 Random Fields; 1.2.1 Covariance Functions; 1.2.2 Gaussian Random Fields; 1.2.3 Differentiation and Integration of Fields; 1.2.4 Statistical Inference on Fields; 1.3 Multiple Comparisons; 1.3.1 Bonferroni Correction; 1.3.2 Random Fields Theory; 1.3.3 Poisson Clumping Heuristic; 1.3.4 Euler Characteristic Method; 1.3.5 Intrinsic Volume; 1.3.6 Euler Characteristic Density; 1.4 Statistical Power Analysis; 1.4.1 Statistical Power at a Voxel; 1.4.2 Statistical Power under Multiple Comparisons | ||
500 | |a 2. Deformation-Based Morphometry2.1 Image Registration; 2.2 Deformation-Based Morphometry; 2.3 Displacement Vector Fields; 2.3.1 Dynamic Model on Displacement; 2.3.2 Local Inference via Hotelling's T2-Field; 2.3.3 Detecting Local Brain Growth; 2.4 Global Inference via Integral Statistic; 2.4.1 Karhunen-Lo eve Expansion; 2.4.2 Mercer's Theorem; 2.4.3 Integral Statistic on Displacement; 3. Tensor-Based Morphometry; 3.1 Jacobian Determinant; 3.2 Distributional Assumptions; 3.3 Local Volume Changes; 3.4 Longitudinal Modeling; 3.4.1 Normal Brain Development in Children | ||
500 | |a 3.5 Global Inference via Divergence Theorem3.6 Second Order Tensor Fields; 3.6.1 Membrane Spline Energy; 3.6.2 Vorticity Tensor Fields; 3.6.3 Generalized Variance Field; 4. Voxel-Based Morphometry; 4.1 Image Segmentation; 4.1.1 Mumford-Shah Model; 4.1.2 Level Sets; 4.1.3 Active Contours; 4.1.4 Deformable Surface Models; 4.1.5 Thin-Plate Spline Thresholding; 4.2 Mixture Models; 4.2.1 Bayesian Segmentation; 4.2.2 Mixture Models; 4.2.3 Expectation Maximization Algorithm; 4.2.4 Two Components Gaussian Mixtures; 4.3 Voxel-Based Morphometry; 4.3.1 ROI Volume Estimation in VBM. | ||
500 | |a 4.3.2 Limitations of Witelson Partition4.3.3 General Linear Models on Tissue Densities; 4.3.4 2D VBM Applied to Corpus Callosum; 5. Geometry of Cortical Manifolds; 5.1 Surface Parameterization; 5.1.1 B-Spline Parameterization; 5.1.2 B-Spline Curves; 5.1.3 Quadratic Parameterization; 5.1.4 Fourier Descriptors; 5.2 Surface Normals and Curvatures; 5.2.1 Surface Normals; 5.2.2 Gaussian and Mean Curvatures; 5.2.3 Curvatures of Polynomial Surfaces; 5.3 Laplace-Beltrami Operator; 5.3.1 Eigenfunctions of Laplace-Beltrami Operator; 5.3.2 Multiplicity of Eigenfunctions | ||
500 | |a 5.3.3 Laplace-Beltrami Shape Descriptors5.3.4 Second Eigenfunctions; 5.3.5 Dirichlet Energy; 5.3.6 Fiedler's Vector; 5.4 Finite Element Methods; 5.4.1 Pieacewise Linear Functions; 5.4.2 Mass and Stiffness Matrices; 6. Smoothing on Cortical Manifolds; 6.1 Gaussian Kernel Smoothing; 6.1.1 Isotropic Gaussian Kernel; 6.1.2 Anisotropic Gaussian Kernel; 6.2 Diffusion Smoothing; 6.2.1 Diffusion in Euclidean Space; 6.2.2 Diffusion in 1D; 6.2.3 Diffusion on Triangular Mesh; 6.2.4 Finite Difference Scheme; 6.3 Heat Kernel Smoothing; 6.3.1 Heat Kernel; 6.3.2 Heat Kernel Smoothing | ||
500 | |a Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip | ||
650 | 7 | |a MEDICAL / Anatomy |2 bisacsh | |
650 | 7 | |a SCIENCE / Life Sciences / Human Anatomy & Physiology |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Medizin | |
650 | 4 | |a Neuroanatomy |x Mathematics | |
650 | 4 | |a Neuroanatomy |x Statistical methods | |
650 | 0 | 7 | |a Bioinformatik |0 (DE-588)4611085-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuroanatomie |0 (DE-588)4171577-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Neuroanatomie |0 (DE-588)4171577-9 |D s |
689 | 0 | 1 | |a Bioinformatik |0 (DE-588)4611085-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-981-4335-43-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 981-4335-43-6 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028497978 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175459511959552 |
---|---|
any_adam_object | |
author | Chung, Moo K. |
author_facet | Chung, Moo K. |
author_role | aut |
author_sort | Chung, Moo K. |
author_variant | m k c mk mkc |
building | Verbundindex |
bvnumber | BV043073786 |
classification_rvk | WC 7700 WW 2200 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)828792986 (DE-599)BVBBV043073786 |
dewey-full | 611.8015 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 611 - Human anatomy, cytology, histology |
dewey-raw | 611.8015 |
dewey-search | 611.8015 |
dewey-sort | 3611.8015 |
dewey-tens | 610 - Medicine and health |
discipline | Biologie Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05695nmm a2200649zc 4500</leader><controlfield tag="001">BV043073786</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299133061</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">1-299-13306-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299133068</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">978-1-299-13306-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814335430</subfield><subfield code="9">978-981-4335-43-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814335447</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4335-44-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814335444</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4335-44-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)828792986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043073786</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">611.8015</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7700</subfield><subfield code="0">(DE-625)148144:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 2200</subfield><subfield code="0">(DE-625)158906:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chung, Moo K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational neuroanatomy</subfield><subfield code="b">the methods</subfield><subfield code="c">Moo K. Chung</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 403 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6.3.3 Iterated Kernel Smoothing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 367-398) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface; Contents; 1. Statistical Preliminary; 1.1 General Linear Models; 1.2 Random Fields; 1.2.1 Covariance Functions; 1.2.2 Gaussian Random Fields; 1.2.3 Differentiation and Integration of Fields; 1.2.4 Statistical Inference on Fields; 1.3 Multiple Comparisons; 1.3.1 Bonferroni Correction; 1.3.2 Random Fields Theory; 1.3.3 Poisson Clumping Heuristic; 1.3.4 Euler Characteristic Method; 1.3.5 Intrinsic Volume; 1.3.6 Euler Characteristic Density; 1.4 Statistical Power Analysis; 1.4.1 Statistical Power at a Voxel; 1.4.2 Statistical Power under Multiple Comparisons</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Deformation-Based Morphometry2.1 Image Registration; 2.2 Deformation-Based Morphometry; 2.3 Displacement Vector Fields; 2.3.1 Dynamic Model on Displacement; 2.3.2 Local Inference via Hotelling's T2-Field; 2.3.3 Detecting Local Brain Growth; 2.4 Global Inference via Integral Statistic; 2.4.1 Karhunen-Lo eve Expansion; 2.4.2 Mercer's Theorem; 2.4.3 Integral Statistic on Displacement; 3. Tensor-Based Morphometry; 3.1 Jacobian Determinant; 3.2 Distributional Assumptions; 3.3 Local Volume Changes; 3.4 Longitudinal Modeling; 3.4.1 Normal Brain Development in Children</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.5 Global Inference via Divergence Theorem3.6 Second Order Tensor Fields; 3.6.1 Membrane Spline Energy; 3.6.2 Vorticity Tensor Fields; 3.6.3 Generalized Variance Field; 4. Voxel-Based Morphometry; 4.1 Image Segmentation; 4.1.1 Mumford-Shah Model; 4.1.2 Level Sets; 4.1.3 Active Contours; 4.1.4 Deformable Surface Models; 4.1.5 Thin-Plate Spline Thresholding; 4.2 Mixture Models; 4.2.1 Bayesian Segmentation; 4.2.2 Mixture Models; 4.2.3 Expectation Maximization Algorithm; 4.2.4 Two Components Gaussian Mixtures; 4.3 Voxel-Based Morphometry; 4.3.1 ROI Volume Estimation in VBM.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.3.2 Limitations of Witelson Partition4.3.3 General Linear Models on Tissue Densities; 4.3.4 2D VBM Applied to Corpus Callosum; 5. Geometry of Cortical Manifolds; 5.1 Surface Parameterization; 5.1.1 B-Spline Parameterization; 5.1.2 B-Spline Curves; 5.1.3 Quadratic Parameterization; 5.1.4 Fourier Descriptors; 5.2 Surface Normals and Curvatures; 5.2.1 Surface Normals; 5.2.2 Gaussian and Mean Curvatures; 5.2.3 Curvatures of Polynomial Surfaces; 5.3 Laplace-Beltrami Operator; 5.3.1 Eigenfunctions of Laplace-Beltrami Operator; 5.3.2 Multiplicity of Eigenfunctions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5.3.3 Laplace-Beltrami Shape Descriptors5.3.4 Second Eigenfunctions; 5.3.5 Dirichlet Energy; 5.3.6 Fiedler's Vector; 5.4 Finite Element Methods; 5.4.1 Pieacewise Linear Functions; 5.4.2 Mass and Stiffness Matrices; 6. Smoothing on Cortical Manifolds; 6.1 Gaussian Kernel Smoothing; 6.1.1 Isotropic Gaussian Kernel; 6.1.2 Anisotropic Gaussian Kernel; 6.2 Diffusion Smoothing; 6.2.1 Diffusion in Euclidean Space; 6.2.2 Diffusion in 1D; 6.2.3 Diffusion on Triangular Mesh; 6.2.4 Finite Difference Scheme; 6.3 Heat Kernel Smoothing; 6.3.1 Heat Kernel; 6.3.2 Heat Kernel Smoothing</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Anatomy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Life Sciences / Human Anatomy & Physiology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medizin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroanatomy</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuroanatomy</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuroanatomie</subfield><subfield code="0">(DE-588)4171577-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuroanatomie</subfield><subfield code="0">(DE-588)4171577-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bioinformatik</subfield><subfield code="0">(DE-588)4611085-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-4335-43-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">981-4335-43-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028497978</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043073786 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:16:37Z |
institution | BVB |
isbn | 1299133061 9781299133068 9789814335430 9789814335447 9814335444 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028497978 |
oclc_num | 828792986 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xv, 403 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Chung, Moo K. Verfasser aut Computational neuroanatomy the methods Moo K. Chung Singapore World Scientific Pub. Co. ©2013 1 Online-Ressource (xv, 403 pages) txt rdacontent c rdamedia cr rdacarrier 6.3.3 Iterated Kernel Smoothing Includes bibliographical references (pages 367-398) and index Preface; Contents; 1. Statistical Preliminary; 1.1 General Linear Models; 1.2 Random Fields; 1.2.1 Covariance Functions; 1.2.2 Gaussian Random Fields; 1.2.3 Differentiation and Integration of Fields; 1.2.4 Statistical Inference on Fields; 1.3 Multiple Comparisons; 1.3.1 Bonferroni Correction; 1.3.2 Random Fields Theory; 1.3.3 Poisson Clumping Heuristic; 1.3.4 Euler Characteristic Method; 1.3.5 Intrinsic Volume; 1.3.6 Euler Characteristic Density; 1.4 Statistical Power Analysis; 1.4.1 Statistical Power at a Voxel; 1.4.2 Statistical Power under Multiple Comparisons 2. Deformation-Based Morphometry2.1 Image Registration; 2.2 Deformation-Based Morphometry; 2.3 Displacement Vector Fields; 2.3.1 Dynamic Model on Displacement; 2.3.2 Local Inference via Hotelling's T2-Field; 2.3.3 Detecting Local Brain Growth; 2.4 Global Inference via Integral Statistic; 2.4.1 Karhunen-Lo eve Expansion; 2.4.2 Mercer's Theorem; 2.4.3 Integral Statistic on Displacement; 3. Tensor-Based Morphometry; 3.1 Jacobian Determinant; 3.2 Distributional Assumptions; 3.3 Local Volume Changes; 3.4 Longitudinal Modeling; 3.4.1 Normal Brain Development in Children 3.5 Global Inference via Divergence Theorem3.6 Second Order Tensor Fields; 3.6.1 Membrane Spline Energy; 3.6.2 Vorticity Tensor Fields; 3.6.3 Generalized Variance Field; 4. Voxel-Based Morphometry; 4.1 Image Segmentation; 4.1.1 Mumford-Shah Model; 4.1.2 Level Sets; 4.1.3 Active Contours; 4.1.4 Deformable Surface Models; 4.1.5 Thin-Plate Spline Thresholding; 4.2 Mixture Models; 4.2.1 Bayesian Segmentation; 4.2.2 Mixture Models; 4.2.3 Expectation Maximization Algorithm; 4.2.4 Two Components Gaussian Mixtures; 4.3 Voxel-Based Morphometry; 4.3.1 ROI Volume Estimation in VBM. 4.3.2 Limitations of Witelson Partition4.3.3 General Linear Models on Tissue Densities; 4.3.4 2D VBM Applied to Corpus Callosum; 5. Geometry of Cortical Manifolds; 5.1 Surface Parameterization; 5.1.1 B-Spline Parameterization; 5.1.2 B-Spline Curves; 5.1.3 Quadratic Parameterization; 5.1.4 Fourier Descriptors; 5.2 Surface Normals and Curvatures; 5.2.1 Surface Normals; 5.2.2 Gaussian and Mean Curvatures; 5.2.3 Curvatures of Polynomial Surfaces; 5.3 Laplace-Beltrami Operator; 5.3.1 Eigenfunctions of Laplace-Beltrami Operator; 5.3.2 Multiplicity of Eigenfunctions 5.3.3 Laplace-Beltrami Shape Descriptors5.3.4 Second Eigenfunctions; 5.3.5 Dirichlet Energy; 5.3.6 Fiedler's Vector; 5.4 Finite Element Methods; 5.4.1 Pieacewise Linear Functions; 5.4.2 Mass and Stiffness Matrices; 6. Smoothing on Cortical Manifolds; 6.1 Gaussian Kernel Smoothing; 6.1.1 Isotropic Gaussian Kernel; 6.1.2 Anisotropic Gaussian Kernel; 6.2 Diffusion Smoothing; 6.2.1 Diffusion in Euclidean Space; 6.2.2 Diffusion in 1D; 6.2.3 Diffusion on Triangular Mesh; 6.2.4 Finite Difference Scheme; 6.3 Heat Kernel Smoothing; 6.3.1 Heat Kernel; 6.3.2 Heat Kernel Smoothing Computational neuroanatomy is an emerging field that utilizes various non-invasive brain imaging modalities, such as MRI and DTI, in quantifying the spatiotemporal dynamics of the human brain structures in both normal and clinical populations. This discip MEDICAL / Anatomy bisacsh SCIENCE / Life Sciences / Human Anatomy & Physiology bisacsh Mathematik Medizin Neuroanatomy Mathematics Neuroanatomy Statistical methods Bioinformatik (DE-588)4611085-9 gnd rswk-swf Neuroanatomie (DE-588)4171577-9 gnd rswk-swf Neuroanatomie (DE-588)4171577-9 s Bioinformatik (DE-588)4611085-9 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Hardcover 978-981-4335-43-0 Erscheint auch als Druck-Ausgabe, Hardcover 981-4335-43-6 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chung, Moo K. Computational neuroanatomy the methods MEDICAL / Anatomy bisacsh SCIENCE / Life Sciences / Human Anatomy & Physiology bisacsh Mathematik Medizin Neuroanatomy Mathematics Neuroanatomy Statistical methods Bioinformatik (DE-588)4611085-9 gnd Neuroanatomie (DE-588)4171577-9 gnd |
subject_GND | (DE-588)4611085-9 (DE-588)4171577-9 |
title | Computational neuroanatomy the methods |
title_auth | Computational neuroanatomy the methods |
title_exact_search | Computational neuroanatomy the methods |
title_full | Computational neuroanatomy the methods Moo K. Chung |
title_fullStr | Computational neuroanatomy the methods Moo K. Chung |
title_full_unstemmed | Computational neuroanatomy the methods Moo K. Chung |
title_short | Computational neuroanatomy |
title_sort | computational neuroanatomy the methods |
title_sub | the methods |
topic | MEDICAL / Anatomy bisacsh SCIENCE / Life Sciences / Human Anatomy & Physiology bisacsh Mathematik Medizin Neuroanatomy Mathematics Neuroanatomy Statistical methods Bioinformatik (DE-588)4611085-9 gnd Neuroanatomie (DE-588)4171577-9 gnd |
topic_facet | MEDICAL / Anatomy SCIENCE / Life Sciences / Human Anatomy & Physiology Mathematik Medizin Neuroanatomy Mathematics Neuroanatomy Statistical methods Bioinformatik Neuroanatomie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533854 |
work_keys_str_mv | AT chungmook computationalneuroanatomythemethods |