Principles of artificial neural networks:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
[2013]
|
Ausgabe: | 3rd edition |
Schriftenreihe: | Advanced series on circuits and systems
v. 7 |
Schlagworte: | |
Online-Zugang: | UER01 |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xviii, 363 pages) illustrations |
ISBN: | 9789814522748 9789814522731 9814522732 9781299770935 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043039288 | ||
003 | DE-604 | ||
005 | 20191121 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2013 |||| o||u| ||||||eng d | ||
020 | |a 9789814522748 |c ebook |9 978-981-4522-74-8 | ||
020 | |a 9789814522731 |9 978-981-4522-73-1 | ||
020 | |a 9814522732 |9 981-4522-73-2 | ||
020 | |a 9781299770935 |9 978-1-299-77093-5 | ||
035 | |a (ZDB-4-EBA)622050 | ||
035 | |a (OCoLC)857066058 | ||
035 | |a (DE-599)BVBBV043039288 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 |a DE-29 | ||
082 | 0 | |a 006.32 |2 23 | |
100 | 1 | |a Graupe, Daniel |e Verfasser |0 (DE-588)1129263053 |4 aut | |
245 | 1 | 0 | |a Principles of artificial neural networks |c Daniel Graupe |
250 | |a 3rd edition | ||
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 online resource (xviii, 363 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced series on circuits and systems |v v. 7 | |
500 | |a Description based on print version record | ||
505 | 8 | |a Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining | |
650 | 7 | |a COMPUTERS / General |2 bisacsh | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Graupe, Daniel |t Principles of artificial neural networks |
912 | |a ZDB-4-EBA | ||
940 | 1 | |q FAW_PDA_EBA | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028463935 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622050 |l UER01 |p ZDB-4-EBA |q UER_PDA_EBA_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175401857056768 |
---|---|
any_adam_object | |
author | Graupe, Daniel |
author_GND | (DE-588)1129263053 |
author_facet | Graupe, Daniel |
author_role | aut |
author_sort | Graupe, Daniel |
author_variant | d g dg |
building | Verbundindex |
bvnumber | BV043039288 |
collection | ZDB-4-EBA |
contents | Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining |
ctrlnum | (ZDB-4-EBA)622050 (OCoLC)857066058 (DE-599)BVBBV043039288 |
dewey-full | 006.32 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.32 |
dewey-search | 006.32 |
dewey-sort | 16.32 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 3rd edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03058nmm a2200529zcb4500</leader><controlfield tag="001">BV043039288</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191121 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814522748</subfield><subfield code="c">ebook</subfield><subfield code="9">978-981-4522-74-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814522731</subfield><subfield code="9">978-981-4522-73-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814522732</subfield><subfield code="9">981-4522-73-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299770935</subfield><subfield code="9">978-1-299-77093-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-4-EBA)622050</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)857066058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043039288</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.32</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graupe, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1129263053</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of artificial neural networks</subfield><subfield code="c">Daniel Graupe</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 363 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series on circuits and systems</subfield><subfield code="v">v. 7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Graupe, Daniel</subfield><subfield code="t">Principles of artificial neural networks</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028463935</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=622050</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">UER_PDA_EBA_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV043039288 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:42Z |
institution | BVB |
isbn | 9789814522748 9789814522731 9814522732 9781299770935 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028463935 |
oclc_num | 857066058 |
open_access_boolean | |
owner | DE-1046 DE-1047 DE-29 |
owner_facet | DE-1046 DE-1047 DE-29 |
physical | 1 online resource (xviii, 363 pages) illustrations |
psigel | ZDB-4-EBA FAW_PDA_EBA ZDB-4-EBA UER_PDA_EBA_Kauf |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific |
record_format | marc |
series2 | Advanced series on circuits and systems |
spelling | Graupe, Daniel Verfasser (DE-588)1129263053 aut Principles of artificial neural networks Daniel Graupe 3rd edition [Hackensack] New Jersey World Scientific [2013] © 2013 1 online resource (xviii, 363 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Advanced series on circuits and systems v. 7 Description based on print version record Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining COMPUTERS / General bisacsh Neural networks (Computer science) fast Neural networks (Computer science) Neuronales Netz (DE-588)4226127-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Neuronales Netz (DE-588)4226127-2 s 2\p DE-604 Erscheint auch als Druck-Ausgabe Graupe, Daniel Principles of artificial neural networks 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Graupe, Daniel Principles of artificial neural networks Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining COMPUTERS / General bisacsh Neural networks (Computer science) fast Neural networks (Computer science) Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4226127-2 (DE-588)4151278-9 |
title | Principles of artificial neural networks |
title_auth | Principles of artificial neural networks |
title_exact_search | Principles of artificial neural networks |
title_full | Principles of artificial neural networks Daniel Graupe |
title_fullStr | Principles of artificial neural networks Daniel Graupe |
title_full_unstemmed | Principles of artificial neural networks Daniel Graupe |
title_short | Principles of artificial neural networks |
title_sort | principles of artificial neural networks |
topic | COMPUTERS / General bisacsh Neural networks (Computer science) fast Neural networks (Computer science) Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | COMPUTERS / General Neural networks (Computer science) Neuronales Netz Einführung |
work_keys_str_mv | AT graupedaniel principlesofartificialneuralnetworks |