Advances in the Homotopy Analysis Method:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
[2014]
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource |
ISBN: | 9789814551243 9789814551250 9814551244 9814551252 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043038794 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814551243 |9 978-981-4551-24-3 | ||
020 | |a 9789814551250 |9 978-981-4551-25-0 | ||
020 | |a 9814551244 |9 981-4551-24-4 | ||
020 | |a 9814551252 |9 981-4551-25-2 | ||
035 | |a (OCoLC)869281856 | ||
035 | |a (DE-599)BVBBV043038794 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514/.24 |2 23 | |
245 | 1 | 0 | |a Advances in the Homotopy Analysis Method |c Edited by Shijun Liao, Professor, Deputy Director of the State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, China |
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c [2014] | |
300 | |a 1 online resource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a 1. Chance and challenge: a brief review of homotopy analysis method / S.-J. Liao -- 2. Predictor homotopy analysis method (PHAM) / S. Abbasbandy and E. Shivanian -- 3. Spectral homotopy analysis method for nonlinear boundary value problems / S. Motsa and P. Sibanda -- 4. Stability of auxiliary linear operator and convergence-control parameter / R.A. Van Gorder -- 5. A convergence condition of the homotopy analysis method / M. Turkyilmazoglu -- 6. Homotopy analysis method for some boundary layer flows of nanofluids / T. Hayat and M. Mustafa -- 7. Homotopy analysis method for fractional Swift-Hohenberg equation / S. Das and K. Vishal -- 8. HAM-based package NOPH for periodic oscillations of nonlinear dynamic systems / Y.-P. Liu -- 9. HAM-based mathematica package BVPh 2.0 for nonlinear boundary value problems / Y.-L. Zhao and S.-J. Liao | |
505 | 8 | |a Unlike other analytic techniques, the homotopy analysis method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Homotopy theory |2 fast | |
650 | 4 | |a Homotopy theory | |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 1 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Liao, Shijun |d 1963- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Advances in the homotopy analysis method |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028463441 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175400912289792 |
---|---|
any_adam_object | |
author2 | Liao, Shijun 1963- |
author2_role | edt |
author2_variant | s l sl |
author_facet | Liao, Shijun 1963- |
building | Verbundindex |
bvnumber | BV043038794 |
collection | ZDB-4-EBA |
contents | 1. Chance and challenge: a brief review of homotopy analysis method / S.-J. Liao -- 2. Predictor homotopy analysis method (PHAM) / S. Abbasbandy and E. Shivanian -- 3. Spectral homotopy analysis method for nonlinear boundary value problems / S. Motsa and P. Sibanda -- 4. Stability of auxiliary linear operator and convergence-control parameter / R.A. Van Gorder -- 5. A convergence condition of the homotopy analysis method / M. Turkyilmazoglu -- 6. Homotopy analysis method for some boundary layer flows of nanofluids / T. Hayat and M. Mustafa -- 7. Homotopy analysis method for fractional Swift-Hohenberg equation / S. Das and K. Vishal -- 8. HAM-based package NOPH for periodic oscillations of nonlinear dynamic systems / Y.-P. Liu -- 9. HAM-based mathematica package BVPh 2.0 for nonlinear boundary value problems / Y.-L. Zhao and S.-J. Liao Unlike other analytic techniques, the homotopy analysis method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications |
ctrlnum | (OCoLC)869281856 (DE-599)BVBBV043038794 |
dewey-full | 514/.24 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.24 |
dewey-search | 514/.24 |
dewey-sort | 3514 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03788nmm a2200505zc 4500</leader><controlfield tag="001">BV043038794</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814551243</subfield><subfield code="9">978-981-4551-24-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814551250</subfield><subfield code="9">978-981-4551-25-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814551244</subfield><subfield code="9">981-4551-24-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814551252</subfield><subfield code="9">981-4551-25-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869281856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043038794</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.24</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in the Homotopy Analysis Method</subfield><subfield code="c">Edited by Shijun Liao, Professor, Deputy Director of the State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Chance and challenge: a brief review of homotopy analysis method / S.-J. Liao -- 2. Predictor homotopy analysis method (PHAM) / S. Abbasbandy and E. Shivanian -- 3. Spectral homotopy analysis method for nonlinear boundary value problems / S. Motsa and P. Sibanda -- 4. Stability of auxiliary linear operator and convergence-control parameter / R.A. Van Gorder -- 5. A convergence condition of the homotopy analysis method / M. Turkyilmazoglu -- 6. Homotopy analysis method for some boundary layer flows of nanofluids / T. Hayat and M. Mustafa -- 7. Homotopy analysis method for fractional Swift-Hohenberg equation / S. Das and K. Vishal -- 8. HAM-based package NOPH for periodic oscillations of nonlinear dynamic systems / Y.-P. Liu -- 9. HAM-based mathematica package BVPh 2.0 for nonlinear boundary value problems / Y.-L. Zhao and S.-J. Liao</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Unlike other analytic techniques, the homotopy analysis method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homotopy theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homotopy theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liao, Shijun</subfield><subfield code="d">1963-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Advances in the homotopy analysis method</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028463441</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043038794 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:42Z |
institution | BVB |
isbn | 9789814551243 9789814551250 9814551244 9814551252 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028463441 |
oclc_num | 869281856 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
spelling | Advances in the Homotopy Analysis Method Edited by Shijun Liao, Professor, Deputy Director of the State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, China [Hackensack] New Jersey World Scientific [2014] 1 online resource txt rdacontent c rdamedia cr rdacarrier Print version record 1. Chance and challenge: a brief review of homotopy analysis method / S.-J. Liao -- 2. Predictor homotopy analysis method (PHAM) / S. Abbasbandy and E. Shivanian -- 3. Spectral homotopy analysis method for nonlinear boundary value problems / S. Motsa and P. Sibanda -- 4. Stability of auxiliary linear operator and convergence-control parameter / R.A. Van Gorder -- 5. A convergence condition of the homotopy analysis method / M. Turkyilmazoglu -- 6. Homotopy analysis method for some boundary layer flows of nanofluids / T. Hayat and M. Mustafa -- 7. Homotopy analysis method for fractional Swift-Hohenberg equation / S. Das and K. Vishal -- 8. HAM-based package NOPH for periodic oscillations of nonlinear dynamic systems / Y.-P. Liu -- 9. HAM-based mathematica package BVPh 2.0 for nonlinear boundary value problems / Y.-L. Zhao and S.-J. Liao Unlike other analytic techniques, the homotopy analysis method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications MATHEMATICS / Topology bisacsh Homotopy theory fast Homotopy theory Randwertproblem (DE-588)4048395-2 gnd rswk-swf Homotopietheorie (DE-588)4128142-1 gnd rswk-swf Randwertproblem (DE-588)4048395-2 s Homotopietheorie (DE-588)4128142-1 s 1\p DE-604 Liao, Shijun 1963- edt Erscheint auch als Druck-Ausgabe Advances in the homotopy analysis method http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Advances in the Homotopy Analysis Method 1. Chance and challenge: a brief review of homotopy analysis method / S.-J. Liao -- 2. Predictor homotopy analysis method (PHAM) / S. Abbasbandy and E. Shivanian -- 3. Spectral homotopy analysis method for nonlinear boundary value problems / S. Motsa and P. Sibanda -- 4. Stability of auxiliary linear operator and convergence-control parameter / R.A. Van Gorder -- 5. A convergence condition of the homotopy analysis method / M. Turkyilmazoglu -- 6. Homotopy analysis method for some boundary layer flows of nanofluids / T. Hayat and M. Mustafa -- 7. Homotopy analysis method for fractional Swift-Hohenberg equation / S. Das and K. Vishal -- 8. HAM-based package NOPH for periodic oscillations of nonlinear dynamic systems / Y.-P. Liu -- 9. HAM-based mathematica package BVPh 2.0 for nonlinear boundary value problems / Y.-L. Zhao and S.-J. Liao Unlike other analytic techniques, the homotopy analysis method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications MATHEMATICS / Topology bisacsh Homotopy theory fast Homotopy theory Randwertproblem (DE-588)4048395-2 gnd Homotopietheorie (DE-588)4128142-1 gnd |
subject_GND | (DE-588)4048395-2 (DE-588)4128142-1 |
title | Advances in the Homotopy Analysis Method |
title_auth | Advances in the Homotopy Analysis Method |
title_exact_search | Advances in the Homotopy Analysis Method |
title_full | Advances in the Homotopy Analysis Method Edited by Shijun Liao, Professor, Deputy Director of the State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, China |
title_fullStr | Advances in the Homotopy Analysis Method Edited by Shijun Liao, Professor, Deputy Director of the State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, China |
title_full_unstemmed | Advances in the Homotopy Analysis Method Edited by Shijun Liao, Professor, Deputy Director of the State Key Lab of Ocean Engineering, Shanghai Jiao Tong University, China |
title_short | Advances in the Homotopy Analysis Method |
title_sort | advances in the homotopy analysis method |
topic | MATHEMATICS / Topology bisacsh Homotopy theory fast Homotopy theory Randwertproblem (DE-588)4048395-2 gnd Homotopietheorie (DE-588)4128142-1 gnd |
topic_facet | MATHEMATICS / Topology Homotopy theory Randwertproblem Homotopietheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=689747 |
work_keys_str_mv | AT liaoshijun advancesinthehomotopyanalysismethod |