Padé approximants:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York
Cambridge University Press
1996
|
Ausgabe: | Second edition |
Schriftenreihe: | Encyclopedia of mathematics and its applications
volume 59 |
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xiv, 746 pages) illustrations |
ISBN: | 0511530072 0521450071 1107088577 9780511530074 9780521450072 9781107088573 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043034692 | ||
003 | DE-604 | ||
005 | 20171124 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s1996 |||| o||u| ||||||eng d | ||
020 | |a 0511530072 |c electronic book |9 0-511-53007-2 | ||
020 | |a 0521450071 |9 0-521-45007-1 | ||
020 | |a 1107088577 |c electronic bk. |9 1-107-08857-7 | ||
020 | |a 9780511530074 |c electronic book |9 978-0-511-53007-4 | ||
020 | |a 9780521450072 |9 978-0-521-45007-2 | ||
020 | |a 9781107088573 |c electronic bk. |9 978-1-107-08857-3 | ||
035 | |a (OCoLC)861692026 | ||
035 | |a (DE-599)BVBBV043034692 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.2432 |2 22 | |
100 | 1 | |a Baker, George A. |d 1932- |e Verfasser |0 (DE-588)142605077 |4 aut | |
245 | 1 | 0 | |a Padé approximants |c George A. Baker, Jr., Peter Graves-Morris |
250 | |a Second edition | ||
264 | 1 | |a Cambridge [England] ; New York |b Cambridge University Press |c 1996 | |
300 | |a 1 online resource (xiv, 746 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v volume 59 | |
500 | |a Description based on print version record | ||
505 | 8 | |a 1. Introduction and definitions -- 2. Elementary developments -- 3. Pade approximants and numerical methods -- 4. Connection with continued fractions -- 5. Stieltjes series and Polya series -- 6. Convergence theory -- 7. Extensions of Pade approximations -- 8. Multiseries approximants -- 9. Connection with integral equations and quantum mechanics -- 10. Connection with numerical analysis -- 11. Connection with quantum field theory -- Appendix: A FORTRAN FUNCTION. | |
505 | 8 | |a The Pade approximant of a given power series is a rational function of numerator degree L and denominator degree M whose power series agrees with the given one up to degree L + M inclusively. A collection of Pade approximants formed by using a suitable set of values of L and M often provides a means of obtaining information about the function outside its circle of convergence, and of more rapidly evaluating the function within its circle of convergence. Applications of these ideas in physics, chemistry, electrical engineering, and other areas have led to a large number of generalizations of Pade approximants that are tailor-made for specific applications. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, computational methods, and integral and algebraic approximants | |
505 | 8 | |a The book is written with a smooth progression from elementary ideas to some of the frontiers of research in approximation theory. Its main purpose is to make the various techniques described accessible to scientists, engineers, and other researchers who may wish to use them, while also presenting the rigorous mathematical theory | |
650 | 4 | |a série Stieltjes | |
650 | 4 | |a mécanique quantique | |
650 | 4 | |a équation intégrale | |
650 | 4 | |a théorie convergence | |
650 | 4 | |a série Polya | |
650 | 4 | |a fraction continue | |
650 | 4 | |a méthode numérique | |
650 | 4 | |a approximation Padé | |
650 | 4 | |a Padé, Approximants de | |
650 | 4 | |a Physique mathématique | |
650 | 7 | |a Padé-benaderingen |2 gtt | |
650 | 7 | |a Padé, Approximants de |2 ram | |
650 | 7 | |a Physique mathématique |2 ram | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Padé approximant |2 fast | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Padé approximant | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Padé-Näherung |0 (DE-588)4173060-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Padé-Näherung |0 (DE-588)4173060-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Graves-Morris, Peter R. |e Sonstige |0 (DE-588)1145300251 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Baker, George A |t (George Allen), 1932-. Padé approximants |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028459342 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175393747369984 |
---|---|
any_adam_object | |
author | Baker, George A. 1932- |
author_GND | (DE-588)142605077 (DE-588)1145300251 |
author_facet | Baker, George A. 1932- |
author_role | aut |
author_sort | Baker, George A. 1932- |
author_variant | g a b ga gab |
building | Verbundindex |
bvnumber | BV043034692 |
collection | ZDB-4-EBA |
contents | 1. Introduction and definitions -- 2. Elementary developments -- 3. Pade approximants and numerical methods -- 4. Connection with continued fractions -- 5. Stieltjes series and Polya series -- 6. Convergence theory -- 7. Extensions of Pade approximations -- 8. Multiseries approximants -- 9. Connection with integral equations and quantum mechanics -- 10. Connection with numerical analysis -- 11. Connection with quantum field theory -- Appendix: A FORTRAN FUNCTION. The Pade approximant of a given power series is a rational function of numerator degree L and denominator degree M whose power series agrees with the given one up to degree L + M inclusively. A collection of Pade approximants formed by using a suitable set of values of L and M often provides a means of obtaining information about the function outside its circle of convergence, and of more rapidly evaluating the function within its circle of convergence. Applications of these ideas in physics, chemistry, electrical engineering, and other areas have led to a large number of generalizations of Pade approximants that are tailor-made for specific applications. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, computational methods, and integral and algebraic approximants The book is written with a smooth progression from elementary ideas to some of the frontiers of research in approximation theory. Its main purpose is to make the various techniques described accessible to scientists, engineers, and other researchers who may wish to use them, while also presenting the rigorous mathematical theory |
ctrlnum | (OCoLC)861692026 (DE-599)BVBBV043034692 |
dewey-full | 515/.2432 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.2432 |
dewey-search | 515/.2432 |
dewey-sort | 3515 42432 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04742nmm a2200757zcb4500</leader><controlfield tag="001">BV043034692</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171124 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511530072</subfield><subfield code="c">electronic book</subfield><subfield code="9">0-511-53007-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521450071</subfield><subfield code="9">0-521-45007-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088577</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-08857-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511530074</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-0-511-53007-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521450072</subfield><subfield code="9">978-0-521-45007-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088573</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-08857-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861692026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043034692</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2432</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baker, George A.</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142605077</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Padé approximants</subfield><subfield code="c">George A. Baker, Jr., Peter Graves-Morris</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [England] ; New York</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 746 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">volume 59</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction and definitions -- 2. Elementary developments -- 3. Pade approximants and numerical methods -- 4. Connection with continued fractions -- 5. Stieltjes series and Polya series -- 6. Convergence theory -- 7. Extensions of Pade approximations -- 8. Multiseries approximants -- 9. Connection with integral equations and quantum mechanics -- 10. Connection with numerical analysis -- 11. Connection with quantum field theory -- Appendix: A FORTRAN FUNCTION.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The Pade approximant of a given power series is a rational function of numerator degree L and denominator degree M whose power series agrees with the given one up to degree L + M inclusively. A collection of Pade approximants formed by using a suitable set of values of L and M often provides a means of obtaining information about the function outside its circle of convergence, and of more rapidly evaluating the function within its circle of convergence. Applications of these ideas in physics, chemistry, electrical engineering, and other areas have led to a large number of generalizations of Pade approximants that are tailor-made for specific applications. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, computational methods, and integral and algebraic approximants</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The book is written with a smooth progression from elementary ideas to some of the frontiers of research in approximation theory. Its main purpose is to make the various techniques described accessible to scientists, engineers, and other researchers who may wish to use them, while also presenting the rigorous mathematical theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">série Stieltjes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mécanique quantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">équation intégrale</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">théorie convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">série Polya</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fraction continue</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">méthode numérique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation Padé</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Padé, Approximants de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physique mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Padé-benaderingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Padé, Approximants de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique mathématique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Padé approximant</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Padé approximant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Padé-Näherung</subfield><subfield code="0">(DE-588)4173060-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Padé-Näherung</subfield><subfield code="0">(DE-588)4173060-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graves-Morris, Peter R.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1145300251</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Baker, George A</subfield><subfield code="t">(George Allen), 1932-. Padé approximants</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028459342</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043034692 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:35Z |
institution | BVB |
isbn | 0511530072 0521450071 1107088577 9780511530074 9780521450072 9781107088573 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028459342 |
oclc_num | 861692026 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xiv, 746 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Baker, George A. 1932- Verfasser (DE-588)142605077 aut Padé approximants George A. Baker, Jr., Peter Graves-Morris Second edition Cambridge [England] ; New York Cambridge University Press 1996 1 online resource (xiv, 746 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications volume 59 Description based on print version record 1. Introduction and definitions -- 2. Elementary developments -- 3. Pade approximants and numerical methods -- 4. Connection with continued fractions -- 5. Stieltjes series and Polya series -- 6. Convergence theory -- 7. Extensions of Pade approximations -- 8. Multiseries approximants -- 9. Connection with integral equations and quantum mechanics -- 10. Connection with numerical analysis -- 11. Connection with quantum field theory -- Appendix: A FORTRAN FUNCTION. The Pade approximant of a given power series is a rational function of numerator degree L and denominator degree M whose power series agrees with the given one up to degree L + M inclusively. A collection of Pade approximants formed by using a suitable set of values of L and M often provides a means of obtaining information about the function outside its circle of convergence, and of more rapidly evaluating the function within its circle of convergence. Applications of these ideas in physics, chemistry, electrical engineering, and other areas have led to a large number of generalizations of Pade approximants that are tailor-made for specific applications. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, computational methods, and integral and algebraic approximants The book is written with a smooth progression from elementary ideas to some of the frontiers of research in approximation theory. Its main purpose is to make the various techniques described accessible to scientists, engineers, and other researchers who may wish to use them, while also presenting the rigorous mathematical theory série Stieltjes mécanique quantique équation intégrale théorie convergence série Polya fraction continue méthode numérique approximation Padé Padé, Approximants de Physique mathématique Padé-benaderingen gtt Padé, Approximants de ram Physique mathématique ram Mathematical physics fast Padé approximant fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Mathematische Physik Padé approximant Mathematical physics Padé-Näherung (DE-588)4173060-4 gnd rswk-swf Padé-Näherung (DE-588)4173060-4 s 1\p DE-604 Graves-Morris, Peter R. Sonstige (DE-588)1145300251 oth Erscheint auch als Druck-Ausgabe Baker, George A (George Allen), 1932-. Padé approximants http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baker, George A. 1932- Padé approximants 1. Introduction and definitions -- 2. Elementary developments -- 3. Pade approximants and numerical methods -- 4. Connection with continued fractions -- 5. Stieltjes series and Polya series -- 6. Convergence theory -- 7. Extensions of Pade approximations -- 8. Multiseries approximants -- 9. Connection with integral equations and quantum mechanics -- 10. Connection with numerical analysis -- 11. Connection with quantum field theory -- Appendix: A FORTRAN FUNCTION. The Pade approximant of a given power series is a rational function of numerator degree L and denominator degree M whose power series agrees with the given one up to degree L + M inclusively. A collection of Pade approximants formed by using a suitable set of values of L and M often provides a means of obtaining information about the function outside its circle of convergence, and of more rapidly evaluating the function within its circle of convergence. Applications of these ideas in physics, chemistry, electrical engineering, and other areas have led to a large number of generalizations of Pade approximants that are tailor-made for specific applications. Applications to statistical mechanics and critical phenomena are extensively covered, and there are newly extended sections devoted to circuit design, matrix Pade approximation, computational methods, and integral and algebraic approximants The book is written with a smooth progression from elementary ideas to some of the frontiers of research in approximation theory. Its main purpose is to make the various techniques described accessible to scientists, engineers, and other researchers who may wish to use them, while also presenting the rigorous mathematical theory série Stieltjes mécanique quantique équation intégrale théorie convergence série Polya fraction continue méthode numérique approximation Padé Padé, Approximants de Physique mathématique Padé-benaderingen gtt Padé, Approximants de ram Physique mathématique ram Mathematical physics fast Padé approximant fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Mathematische Physik Padé approximant Mathematical physics Padé-Näherung (DE-588)4173060-4 gnd |
subject_GND | (DE-588)4173060-4 |
title | Padé approximants |
title_auth | Padé approximants |
title_exact_search | Padé approximants |
title_full | Padé approximants George A. Baker, Jr., Peter Graves-Morris |
title_fullStr | Padé approximants George A. Baker, Jr., Peter Graves-Morris |
title_full_unstemmed | Padé approximants George A. Baker, Jr., Peter Graves-Morris |
title_short | Padé approximants |
title_sort | pade approximants |
topic | série Stieltjes mécanique quantique équation intégrale théorie convergence série Polya fraction continue méthode numérique approximation Padé Padé, Approximants de Physique mathématique Padé-benaderingen gtt Padé, Approximants de ram Physique mathématique ram Mathematical physics fast Padé approximant fast MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Mathematische Physik Padé approximant Mathematical physics Padé-Näherung (DE-588)4173060-4 gnd |
topic_facet | série Stieltjes mécanique quantique équation intégrale théorie convergence série Polya fraction continue méthode numérique approximation Padé Padé, Approximants de Physique mathématique Padé-benaderingen Mathematical physics Padé approximant MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Mathematische Physik Padé-Näherung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=569344 |
work_keys_str_mv | AT bakergeorgea padeapproximants AT gravesmorrispeterr padeapproximants |