Hybrid Dynamical Systems: Modeling, Stability, and Robustness
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2012
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (227 pages) |
ISBN: | 0691153892 1400842638 9780691153896 9781400842636 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043034525 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2012 |||| o||u| ||||||eng d | ||
020 | |a 0691153892 |9 0-691-15389-2 | ||
020 | |a 1400842638 |c electronic bk. |9 1-4008-4263-8 | ||
020 | |a 9780691153896 |9 978-0-691-15389-6 | ||
020 | |a 9781400842636 |c electronic bk. |9 978-1-4008-4263-6 | ||
035 | |a (OCoLC)773567198 | ||
035 | |a (DE-599)BVBBV043034525 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 003.75 | |
100 | 1 | |a Goebel, Rafal |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hybrid Dynamical Systems |b Modeling, Stability, and Robustness |
264 | 1 | |a Princeton |b Princeton University Press |c 2012 | |
300 | |a 1 online resource (227 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Cover; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 The modeling framework; 1.2 Examples in science and engineering; 1.3 Control system examples; 1.4 Connections to other modeling frameworks; 1.5 Notes; 2 The solution concept; 2.1 Data of a hybrid system; 2.2 Hybrid time domains and hybrid arcs; 2.3 Solutions and their basic properties; 2.4 Generators for classes of switching signals; 2.5 Notes; 3 Uniform asymptotic stability, an initial treatment; 3.1 Uniform global pre-asymptotic stability; 3.2 Lyapunov functions; 3.3 Relaxed Lyapunov conditions; 3.4 Stability from containment | |
505 | 8 | |a 3.5 Equivalent characterizations3.6 Notes; 4 Perturbations and generalized solutions; 4.1 Differential and difference equations; 4.2 Systems with state perturbations; 4.3 Generalized solutions; 4.4 Measurement noise in feedback control; 4.5 Krasovskii solutions are Hermes solutions; 4.6 Notes; 5 Preliminaries from set-valued analysis; 5.1 Set convergence; 5.2 Set-valued mappings; 5.3 Graphical convergence of hybrid arcs; 5.4 Differential inclusions; 5.5 Notes; 6 Well-posed hybrid systems and their properties; 6.1 Nominally well-posed hybrid systems; 6.2 Basic assumptions on the data | |
505 | 8 | |a 6.3 Consequences of nominal well-posedness6.4 Well-posed hybrid systems; 6.5 Consequences of well-posedness; 6.6 Notes; 7 Asymptotic stability, an in-depth treatment; 7.1 Pre-asymptotic stability for nominally well-posed systems; 7.2 Robustness concepts; 7.3 Well-posed systems; 7.4 Robustness corollaries; 7.5 Smooth Lyapunov functions; 7.6 Proof of robustness implies smooth Lyapunov functions; 7.7 Notes; 8 Invariance principles; 8.1 Invariance and?-limits; 8.2 Invariance principles involving Lyapunov-like functions; 8.3 Stability analysis using invariance principles | |
505 | 8 | |a 8.4 Meagre-limsup invariance principles8.5 Invariance principles for switching systems; 8.6 Notes; 9 Conical approximation and asymptotic stability; 9.1 Homogeneous hybrid systems; 9.2 Homogeneity and perturbations; 9.3 Conical approximation and stability; 9.4 Notes; Appendix: List of Symbols; Bibliography; Index; B; C; D; F; G; H; I; J; K; L; M; P; Q; R; S; T; U; W. | |
505 | 8 | |a Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-t | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Nonlinear control theory | |
650 | 4 | |a Nonlinear systems | |
650 | 4 | |a Lyapunov functions | |
650 | 7 | |a SCIENCE / System Theory |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Linear & Nonlinear Programming |2 bisacsh | |
650 | 7 | |a Automatic control |2 fast | |
650 | 7 | |a Control theory |2 fast | |
650 | 7 | |a Dynamics |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Automatic control | |
650 | 4 | |a Control theory | |
650 | 4 | |a Dynamics | |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hybrides System |0 (DE-588)4510314-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hybrides System |0 (DE-588)4510314-8 |D s |
689 | 0 | 1 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Sanfelice, Ricardo G. |e Sonstige |4 oth | |
700 | 1 | |a Teel, Andrew R. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Goebel, Rafal |t Hybrid Dynamical Systems : Modeling, Stability, and Robustness |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028459175 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175393444331520 |
---|---|
any_adam_object | |
author | Goebel, Rafal |
author_facet | Goebel, Rafal |
author_role | aut |
author_sort | Goebel, Rafal |
author_variant | r g rg |
building | Verbundindex |
bvnumber | BV043034525 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 The modeling framework; 1.2 Examples in science and engineering; 1.3 Control system examples; 1.4 Connections to other modeling frameworks; 1.5 Notes; 2 The solution concept; 2.1 Data of a hybrid system; 2.2 Hybrid time domains and hybrid arcs; 2.3 Solutions and their basic properties; 2.4 Generators for classes of switching signals; 2.5 Notes; 3 Uniform asymptotic stability, an initial treatment; 3.1 Uniform global pre-asymptotic stability; 3.2 Lyapunov functions; 3.3 Relaxed Lyapunov conditions; 3.4 Stability from containment 3.5 Equivalent characterizations3.6 Notes; 4 Perturbations and generalized solutions; 4.1 Differential and difference equations; 4.2 Systems with state perturbations; 4.3 Generalized solutions; 4.4 Measurement noise in feedback control; 4.5 Krasovskii solutions are Hermes solutions; 4.6 Notes; 5 Preliminaries from set-valued analysis; 5.1 Set convergence; 5.2 Set-valued mappings; 5.3 Graphical convergence of hybrid arcs; 5.4 Differential inclusions; 5.5 Notes; 6 Well-posed hybrid systems and their properties; 6.1 Nominally well-posed hybrid systems; 6.2 Basic assumptions on the data 6.3 Consequences of nominal well-posedness6.4 Well-posed hybrid systems; 6.5 Consequences of well-posedness; 6.6 Notes; 7 Asymptotic stability, an in-depth treatment; 7.1 Pre-asymptotic stability for nominally well-posed systems; 7.2 Robustness concepts; 7.3 Well-posed systems; 7.4 Robustness corollaries; 7.5 Smooth Lyapunov functions; 7.6 Proof of robustness implies smooth Lyapunov functions; 7.7 Notes; 8 Invariance principles; 8.1 Invariance and?-limits; 8.2 Invariance principles involving Lyapunov-like functions; 8.3 Stability analysis using invariance principles 8.4 Meagre-limsup invariance principles8.5 Invariance principles for switching systems; 8.6 Notes; 9 Conical approximation and asymptotic stability; 9.1 Homogeneous hybrid systems; 9.2 Homogeneity and perturbations; 9.3 Conical approximation and stability; 9.4 Notes; Appendix: List of Symbols; Bibliography; Index; B; C; D; F; G; H; I; J; K; L; M; P; Q; R; S; T; U; W. Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-t |
ctrlnum | (OCoLC)773567198 (DE-599)BVBBV043034525 |
dewey-full | 003.75 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.75 |
dewey-search | 003.75 |
dewey-sort | 13.75 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05339nmm a2200685zc 4500</leader><controlfield tag="001">BV043034525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691153892</subfield><subfield code="9">0-691-15389-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400842638</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4263-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691153896</subfield><subfield code="9">978-0-691-15389-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400842636</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4263-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)773567198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043034525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.75</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goebel, Rafal</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hybrid Dynamical Systems</subfield><subfield code="b">Modeling, Stability, and Robustness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (227 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 The modeling framework; 1.2 Examples in science and engineering; 1.3 Control system examples; 1.4 Connections to other modeling frameworks; 1.5 Notes; 2 The solution concept; 2.1 Data of a hybrid system; 2.2 Hybrid time domains and hybrid arcs; 2.3 Solutions and their basic properties; 2.4 Generators for classes of switching signals; 2.5 Notes; 3 Uniform asymptotic stability, an initial treatment; 3.1 Uniform global pre-asymptotic stability; 3.2 Lyapunov functions; 3.3 Relaxed Lyapunov conditions; 3.4 Stability from containment</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5 Equivalent characterizations3.6 Notes; 4 Perturbations and generalized solutions; 4.1 Differential and difference equations; 4.2 Systems with state perturbations; 4.3 Generalized solutions; 4.4 Measurement noise in feedback control; 4.5 Krasovskii solutions are Hermes solutions; 4.6 Notes; 5 Preliminaries from set-valued analysis; 5.1 Set convergence; 5.2 Set-valued mappings; 5.3 Graphical convergence of hybrid arcs; 5.4 Differential inclusions; 5.5 Notes; 6 Well-posed hybrid systems and their properties; 6.1 Nominally well-posed hybrid systems; 6.2 Basic assumptions on the data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.3 Consequences of nominal well-posedness6.4 Well-posed hybrid systems; 6.5 Consequences of well-posedness; 6.6 Notes; 7 Asymptotic stability, an in-depth treatment; 7.1 Pre-asymptotic stability for nominally well-posed systems; 7.2 Robustness concepts; 7.3 Well-posed systems; 7.4 Robustness corollaries; 7.5 Smooth Lyapunov functions; 7.6 Proof of robustness implies smooth Lyapunov functions; 7.7 Notes; 8 Invariance principles; 8.1 Invariance and?-limits; 8.2 Invariance principles involving Lyapunov-like functions; 8.3 Stability analysis using invariance principles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4 Meagre-limsup invariance principles8.5 Invariance principles for switching systems; 8.6 Notes; 9 Conical approximation and asymptotic stability; 9.1 Homogeneous hybrid systems; 9.2 Homogeneity and perturbations; 9.3 Conical approximation and stability; 9.4 Notes; Appendix: List of Symbols; Bibliography; Index; B; C; D; F; G; H; I; J; K; L; M; P; Q; R; S; T; U; W.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-t</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lyapunov functions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / System Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Linear & Nonlinear Programming</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automatic control</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybrides System</subfield><subfield code="0">(DE-588)4510314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hybrides System</subfield><subfield code="0">(DE-588)4510314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanfelice, Ricardo G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teel, Andrew R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Goebel, Rafal</subfield><subfield code="t">Hybrid Dynamical Systems : Modeling, Stability, and Robustness</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028459175</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043034525 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:34Z |
institution | BVB |
isbn | 0691153892 1400842638 9780691153896 9781400842636 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028459175 |
oclc_num | 773567198 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (227 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press |
record_format | marc |
spelling | Goebel, Rafal Verfasser aut Hybrid Dynamical Systems Modeling, Stability, and Robustness Princeton Princeton University Press 2012 1 online resource (227 pages) txt rdacontent c rdamedia cr rdacarrier Print version record Cover; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 The modeling framework; 1.2 Examples in science and engineering; 1.3 Control system examples; 1.4 Connections to other modeling frameworks; 1.5 Notes; 2 The solution concept; 2.1 Data of a hybrid system; 2.2 Hybrid time domains and hybrid arcs; 2.3 Solutions and their basic properties; 2.4 Generators for classes of switching signals; 2.5 Notes; 3 Uniform asymptotic stability, an initial treatment; 3.1 Uniform global pre-asymptotic stability; 3.2 Lyapunov functions; 3.3 Relaxed Lyapunov conditions; 3.4 Stability from containment 3.5 Equivalent characterizations3.6 Notes; 4 Perturbations and generalized solutions; 4.1 Differential and difference equations; 4.2 Systems with state perturbations; 4.3 Generalized solutions; 4.4 Measurement noise in feedback control; 4.5 Krasovskii solutions are Hermes solutions; 4.6 Notes; 5 Preliminaries from set-valued analysis; 5.1 Set convergence; 5.2 Set-valued mappings; 5.3 Graphical convergence of hybrid arcs; 5.4 Differential inclusions; 5.5 Notes; 6 Well-posed hybrid systems and their properties; 6.1 Nominally well-posed hybrid systems; 6.2 Basic assumptions on the data 6.3 Consequences of nominal well-posedness6.4 Well-posed hybrid systems; 6.5 Consequences of well-posedness; 6.6 Notes; 7 Asymptotic stability, an in-depth treatment; 7.1 Pre-asymptotic stability for nominally well-posed systems; 7.2 Robustness concepts; 7.3 Well-posed systems; 7.4 Robustness corollaries; 7.5 Smooth Lyapunov functions; 7.6 Proof of robustness implies smooth Lyapunov functions; 7.7 Notes; 8 Invariance principles; 8.1 Invariance and?-limits; 8.2 Invariance principles involving Lyapunov-like functions; 8.3 Stability analysis using invariance principles 8.4 Meagre-limsup invariance principles8.5 Invariance principles for switching systems; 8.6 Notes; 9 Conical approximation and asymptotic stability; 9.1 Homogeneous hybrid systems; 9.2 Homogeneity and perturbations; 9.3 Conical approximation and stability; 9.4 Notes; Appendix: List of Symbols; Bibliography; Index; B; C; D; F; G; H; I; J; K; L; M; P; Q; R; S; T; U; W. Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-t Mathematics Nonlinear control theory Nonlinear systems Lyapunov functions SCIENCE / System Theory bisacsh MATHEMATICS / Linear & Nonlinear Programming bisacsh Automatic control fast Control theory fast Dynamics fast Mathematik Automatic control Control theory Dynamics Dynamisches System (DE-588)4013396-5 gnd rswk-swf Hybrides System (DE-588)4510314-8 gnd rswk-swf Hybrides System (DE-588)4510314-8 s Dynamisches System (DE-588)4013396-5 s 1\p DE-604 Sanfelice, Ricardo G. Sonstige oth Teel, Andrew R. Sonstige oth Erscheint auch als Druck-Ausgabe Goebel, Rafal Hybrid Dynamical Systems : Modeling, Stability, and Robustness http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Goebel, Rafal Hybrid Dynamical Systems Modeling, Stability, and Robustness Cover; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 The modeling framework; 1.2 Examples in science and engineering; 1.3 Control system examples; 1.4 Connections to other modeling frameworks; 1.5 Notes; 2 The solution concept; 2.1 Data of a hybrid system; 2.2 Hybrid time domains and hybrid arcs; 2.3 Solutions and their basic properties; 2.4 Generators for classes of switching signals; 2.5 Notes; 3 Uniform asymptotic stability, an initial treatment; 3.1 Uniform global pre-asymptotic stability; 3.2 Lyapunov functions; 3.3 Relaxed Lyapunov conditions; 3.4 Stability from containment 3.5 Equivalent characterizations3.6 Notes; 4 Perturbations and generalized solutions; 4.1 Differential and difference equations; 4.2 Systems with state perturbations; 4.3 Generalized solutions; 4.4 Measurement noise in feedback control; 4.5 Krasovskii solutions are Hermes solutions; 4.6 Notes; 5 Preliminaries from set-valued analysis; 5.1 Set convergence; 5.2 Set-valued mappings; 5.3 Graphical convergence of hybrid arcs; 5.4 Differential inclusions; 5.5 Notes; 6 Well-posed hybrid systems and their properties; 6.1 Nominally well-posed hybrid systems; 6.2 Basic assumptions on the data 6.3 Consequences of nominal well-posedness6.4 Well-posed hybrid systems; 6.5 Consequences of well-posedness; 6.6 Notes; 7 Asymptotic stability, an in-depth treatment; 7.1 Pre-asymptotic stability for nominally well-posed systems; 7.2 Robustness concepts; 7.3 Well-posed systems; 7.4 Robustness corollaries; 7.5 Smooth Lyapunov functions; 7.6 Proof of robustness implies smooth Lyapunov functions; 7.7 Notes; 8 Invariance principles; 8.1 Invariance and?-limits; 8.2 Invariance principles involving Lyapunov-like functions; 8.3 Stability analysis using invariance principles 8.4 Meagre-limsup invariance principles8.5 Invariance principles for switching systems; 8.6 Notes; 9 Conical approximation and asymptotic stability; 9.1 Homogeneous hybrid systems; 9.2 Homogeneity and perturbations; 9.3 Conical approximation and stability; 9.4 Notes; Appendix: List of Symbols; Bibliography; Index; B; C; D; F; G; H; I; J; K; L; M; P; Q; R; S; T; U; W. Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-t Mathematics Nonlinear control theory Nonlinear systems Lyapunov functions SCIENCE / System Theory bisacsh MATHEMATICS / Linear & Nonlinear Programming bisacsh Automatic control fast Control theory fast Dynamics fast Mathematik Automatic control Control theory Dynamics Dynamisches System (DE-588)4013396-5 gnd Hybrides System (DE-588)4510314-8 gnd |
subject_GND | (DE-588)4013396-5 (DE-588)4510314-8 |
title | Hybrid Dynamical Systems Modeling, Stability, and Robustness |
title_auth | Hybrid Dynamical Systems Modeling, Stability, and Robustness |
title_exact_search | Hybrid Dynamical Systems Modeling, Stability, and Robustness |
title_full | Hybrid Dynamical Systems Modeling, Stability, and Robustness |
title_fullStr | Hybrid Dynamical Systems Modeling, Stability, and Robustness |
title_full_unstemmed | Hybrid Dynamical Systems Modeling, Stability, and Robustness |
title_short | Hybrid Dynamical Systems |
title_sort | hybrid dynamical systems modeling stability and robustness |
title_sub | Modeling, Stability, and Robustness |
topic | Mathematics Nonlinear control theory Nonlinear systems Lyapunov functions SCIENCE / System Theory bisacsh MATHEMATICS / Linear & Nonlinear Programming bisacsh Automatic control fast Control theory fast Dynamics fast Mathematik Automatic control Control theory Dynamics Dynamisches System (DE-588)4013396-5 gnd Hybrides System (DE-588)4510314-8 gnd |
topic_facet | Mathematics Nonlinear control theory Nonlinear systems Lyapunov functions SCIENCE / System Theory MATHEMATICS / Linear & Nonlinear Programming Automatic control Control theory Dynamics Mathematik Dynamisches System Hybrides System |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=444101 |
work_keys_str_mv | AT goebelrafal hybriddynamicalsystemsmodelingstabilityandrobustness AT sanfelicericardog hybriddynamicalsystemsmodelingstabilityandrobustness AT teelandrewr hybriddynamicalsystemsmodelingstabilityandrobustness |