Forcing for mathematicians:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Hackensack] New Jersey
World Scientific
[2014]
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (x, 142 pages) |
ISBN: | 9789814566018 9789814566957 9814566012 9814566950 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043033137 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814566018 |c electronic bk. |9 978-981-4566-01-8 | ||
020 | |a 9789814566957 |c pbk. : alk. paper |9 978-981-4566-95-7 | ||
020 | |a 9814566012 |c electronic bk. |9 981-4566-01-2 | ||
020 | |a 9814566950 |c pbk. : alk. paper |9 981-4566-95-0 | ||
035 | |a (OCoLC)872114307 | ||
035 | |a (DE-599)BVBBV043033137 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511.3/4 |2 23 | |
084 | |a SK 150 |0 (DE-625)143218: |2 rvk | ||
100 | 1 | |a Weaver, Nik |e Verfasser |4 aut | |
245 | 1 | 0 | |a Forcing for mathematicians |c by Nik Weaver, Washington University in St. Louis, USA. |
264 | 1 | |a [Hackensack] New Jersey |b World Scientific |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 online resource (x, 142 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
505 | 8 | |a Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics | |
505 | 8 | |a 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation | |
650 | 7 | |a MATHEMATICS / General |2 bisacsh | |
650 | 4 | |a Forcing (Model theory) | |
650 | 4 | |a Set theory | |
650 | 4 | |a Axiom of choice | |
650 | 4 | |a Continuum hypothesis | |
650 | 0 | 7 | |a Forcing |0 (DE-588)4154978-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Forcing |0 (DE-588)4154978-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Weaver, Nik |t Forcing for mathematicians |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-981-4566-00-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 981-4566-00-4 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028457787 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175390927749120 |
---|---|
any_adam_object | |
author | Weaver, Nik |
author_facet | Weaver, Nik |
author_role | aut |
author_sort | Weaver, Nik |
author_variant | n w nw |
building | Verbundindex |
bvnumber | BV043033137 |
classification_rvk | SK 150 |
collection | ZDB-4-EBA |
contents | Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation |
ctrlnum | (OCoLC)872114307 (DE-599)BVBBV043033137 |
dewey-full | 511.3/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/4 |
dewey-search | 511.3/4 |
dewey-sort | 3511.3 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03940nmm a2200553zc 4500</leader><controlfield tag="001">BV043033137</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814566018</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4566-01-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814566957</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">978-981-4566-95-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814566012</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4566-01-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814566950</subfield><subfield code="c">pbk. : alk. paper</subfield><subfield code="9">981-4566-95-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)872114307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043033137</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3/4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="0">(DE-625)143218:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weaver, Nik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Forcing for mathematicians</subfield><subfield code="c">by Nik Weaver, Washington University in St. Louis, USA.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Hackensack] New Jersey</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 142 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forcing (Model theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Axiom of choice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum hypothesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Forcing</subfield><subfield code="0">(DE-588)4154978-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Weaver, Nik</subfield><subfield code="t">Forcing for mathematicians</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-981-4566-00-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">981-4566-00-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028457787</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043033137 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:32Z |
institution | BVB |
isbn | 9789814566018 9789814566957 9814566012 9814566950 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028457787 |
oclc_num | 872114307 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (x, 142 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
spelling | Weaver, Nik Verfasser aut Forcing for mathematicians by Nik Weaver, Washington University in St. Louis, USA. [Hackensack] New Jersey World Scientific [2014] © 2014 1 online resource (x, 142 pages) txt rdacontent c rdamedia cr rdacarrier Description based on print version record Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation MATHEMATICS / General bisacsh Forcing (Model theory) Set theory Axiom of choice Continuum hypothesis Forcing (DE-588)4154978-8 gnd rswk-swf Forcing (DE-588)4154978-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Weaver, Nik Forcing for mathematicians Erscheint auch als Druckausgabe 978-981-4566-00-1 Erscheint auch als Druckausgabe 981-4566-00-4 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Weaver, Nik Forcing for mathematicians Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics 1. Peano arithmetic -- 2. Zermelo-Fraenkel set theory -- 3. Well-ordered sets -- 4. Ordinals -- 5. Cardinals -- 6. Relativization -- 7. Reflection -- 8. Forcing notions -- 9. Generic extensions -- 10. Forcing equality -- 11. The fundamental theorem -- 12. Forcing CH -- 13. Forcing [symbol]CH -- 14. Families of entire functions -- 15. Self-homeomorphisms of [symbols]I* -- 16. Pure sttes on [symbol](H)* -- 17. The diamond principle -- 18. Suslin's problem, I* -- 19. Naimark's problem* -- 20. A stronger diamond -- 21. Whitehead's problem, I* -- 22. Iterated forcing -- 23. Martin's axiom -- 24. Suslin's problem, II* -- 25. Whitehead's problem, II* -- 26. The open coloring axiom -- 27. Self-homeomorphisms of [symbols], II* -- 28. Automorphisms of the Calkin algebra, I* -- 29. Automorphisms of the Calkin algebra, II* -- 30. The multiverse interpretation MATHEMATICS / General bisacsh Forcing (Model theory) Set theory Axiom of choice Continuum hypothesis Forcing (DE-588)4154978-8 gnd |
subject_GND | (DE-588)4154978-8 |
title | Forcing for mathematicians |
title_auth | Forcing for mathematicians |
title_exact_search | Forcing for mathematicians |
title_full | Forcing for mathematicians by Nik Weaver, Washington University in St. Louis, USA. |
title_fullStr | Forcing for mathematicians by Nik Weaver, Washington University in St. Louis, USA. |
title_full_unstemmed | Forcing for mathematicians by Nik Weaver, Washington University in St. Louis, USA. |
title_short | Forcing for mathematicians |
title_sort | forcing for mathematicians |
topic | MATHEMATICS / General bisacsh Forcing (Model theory) Set theory Axiom of choice Continuum hypothesis Forcing (DE-588)4154978-8 gnd |
topic_facet | MATHEMATICS / General Forcing (Model theory) Set theory Axiom of choice Continuum hypothesis Forcing |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=711759 |
work_keys_str_mv | AT weavernik forcingformathematicians |