The Traveling Salesman Problem: a Computational Study
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2011
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Print version record |
Beschreibung: | 1 online resource (606 pages) |
ISBN: | 0691129932 1283256118 1400841100 9780691129938 9781283256117 9781400841103 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043031564 | ||
003 | DE-604 | ||
005 | 20171204 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2011 |||| o||u| ||||||eng d | ||
020 | |a 0691129932 |9 0-691-12993-2 | ||
020 | |a 1283256118 |9 1-283-25611-8 | ||
020 | |a 1400841100 |c electronic bk. |9 1-4008-4110-0 | ||
020 | |a 9780691129938 |9 978-0-691-12993-8 | ||
020 | |a 9781283256117 |9 978-1-283-25611-7 | ||
020 | |a 9781400841103 |c electronic bk. |9 978-1-4008-4110-3 | ||
035 | |a (OCoLC)749265038 | ||
035 | |a (DE-599)BVBBV043031564 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 511/.5 | |
100 | 1 | |a Applegate, David L. |e Verfasser |0 (DE-588)1089639260 |4 aut | |
245 | 1 | 0 | |a The Traveling Salesman Problem |b a Computational Study |
264 | 1 | |a Princeton |b Princeton University Press |c 2011 | |
300 | |a 1 online resource (606 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Operations research | |
650 | 4 | |a Traveling-salesman problem | |
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Graphic Methods |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Traveling salesman problem | |
650 | 0 | 7 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Travelling-salesman-Problem |0 (DE-588)4185966-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bixby, Robert E. |e Sonstige |4 oth | |
700 | 1 | |a Chvatal, Vasek |e Sonstige |4 oth | |
700 | 1 | |a Cook, William J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Applegate, David L |t . Traveling Salesman Problem : A Computational Study |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028456215 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175388186771456 |
---|---|
any_adam_object | |
author | Applegate, David L. |
author_GND | (DE-588)1089639260 |
author_facet | Applegate, David L. |
author_role | aut |
author_sort | Applegate, David L. |
author_variant | d l a dl dla |
building | Verbundindex |
bvnumber | BV043031564 |
collection | ZDB-4-EBA |
contents | This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho |
ctrlnum | (OCoLC)749265038 (DE-599)BVBBV043031564 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03017nmm a2200589zc 4500</leader><controlfield tag="001">BV043031564</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171204 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691129932</subfield><subfield code="9">0-691-12993-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283256118</subfield><subfield code="9">1-283-25611-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400841100</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-4110-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691129938</subfield><subfield code="9">978-0-691-12993-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283256117</subfield><subfield code="9">978-1-283-25611-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400841103</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-4110-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)749265038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043031564</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Applegate, David L.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089639260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Traveling Salesman Problem</subfield><subfield code="b">a Computational Study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (606 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling-salesman problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Graphic Methods</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traveling salesman problem</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Travelling-salesman-Problem</subfield><subfield code="0">(DE-588)4185966-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bixby, Robert E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chvatal, Vasek</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cook, William J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Applegate, David L</subfield><subfield code="t">. Traveling Salesman Problem : A Computational Study</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028456215</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043031564 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:15:29Z |
institution | BVB |
isbn | 0691129932 1283256118 1400841100 9780691129938 9781283256117 9781400841103 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028456215 |
oclc_num | 749265038 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (606 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press |
record_format | marc |
spelling | Applegate, David L. Verfasser (DE-588)1089639260 aut The Traveling Salesman Problem a Computational Study Princeton Princeton University Press 2011 1 online resource (606 pages) txt rdacontent c rdamedia cr rdacarrier Print version record This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho Algorithms Operations research Traveling-salesman problem Mathematics MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / Applied bisacsh Mathematik Traveling salesman problem Travelling-salesman-Problem (DE-588)4185966-2 gnd rswk-swf Travelling-salesman-Problem (DE-588)4185966-2 s 1\p DE-604 Bixby, Robert E. Sonstige oth Chvatal, Vasek Sonstige oth Cook, William J. Sonstige oth Erscheint auch als Druck-Ausgabe Applegate, David L . Traveling Salesman Problem : A Computational Study http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Applegate, David L. The Traveling Salesman Problem a Computational Study This book presents the latest findings on one of the most intensely investigated subjects in computational mathematics--the traveling salesman problem. It sounds simple enough: given a set of cities and the cost of travel between each pair of them, the problem challenges you to find the cheapest route by which to visit all the cities and return home to where you began. Though seemingly modest, this exercise has inspired studies by mathematicians, chemists, and physicists. Teachers use it in the classroom. It has practical applications in genetics, telecommunications, and neuroscience. The autho Algorithms Operations research Traveling-salesman problem Mathematics MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / Applied bisacsh Mathematik Traveling salesman problem Travelling-salesman-Problem (DE-588)4185966-2 gnd |
subject_GND | (DE-588)4185966-2 |
title | The Traveling Salesman Problem a Computational Study |
title_auth | The Traveling Salesman Problem a Computational Study |
title_exact_search | The Traveling Salesman Problem a Computational Study |
title_full | The Traveling Salesman Problem a Computational Study |
title_fullStr | The Traveling Salesman Problem a Computational Study |
title_full_unstemmed | The Traveling Salesman Problem a Computational Study |
title_short | The Traveling Salesman Problem |
title_sort | the traveling salesman problem a computational study |
title_sub | a Computational Study |
topic | Algorithms Operations research Traveling-salesman problem Mathematics MATHEMATICS / Graphic Methods bisacsh MATHEMATICS / Applied bisacsh Mathematik Traveling salesman problem Travelling-salesman-Problem (DE-588)4185966-2 gnd |
topic_facet | Algorithms Operations research Traveling-salesman problem Mathematics MATHEMATICS / Graphic Methods MATHEMATICS / Applied Mathematik Traveling salesman problem Travelling-salesman-Problem |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=390512 |
work_keys_str_mv | AT applegatedavidl thetravelingsalesmanproblemacomputationalstudy AT bixbyroberte thetravelingsalesmanproblemacomputationalstudy AT chvatalvasek thetravelingsalesmanproblemacomputationalstudy AT cookwilliamj thetravelingsalesmanproblemacomputationalstudy |