Spherical harmonics in p dimensions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ
World Scientific
[2014]
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Description based on print version record |
Beschreibung: | 1 online resource (xii, 143 pages) illustrations |
ISBN: | 9789814596695 9789814596701 9814596698 9814596701 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043030308 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2014 |||| o||u| ||||||eng d | ||
020 | |a 9789814596695 |9 978-981-4596-69-5 | ||
020 | |a 9789814596701 |c electronic bk. |9 978-981-4596-70-1 | ||
020 | |a 9814596698 |9 981-4596-69-8 | ||
020 | |a 9814596701 |c electronic bk. |9 981-4596-70-1 | ||
035 | |a (OCoLC)886539897 | ||
035 | |a (DE-599)BVBBV043030308 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515/.785 |2 23 | |
100 | 1 | |a Efthimiou, Costas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spherical harmonics in p dimensions |c Costas Efthimiou, Christopher Frye |
264 | 1 | |a Singapore ; Hackensack, NJ |b World Scientific |c [2014] | |
300 | |a 1 online resource (xii, 143 pages) |b illustrations | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on print version record | ||
505 | 8 | |a 1. Introduction. 1.1. Separation of variables. 1.2. Quantum mechanical angular momentum -- 2. Working in p dimensions. 2.1 Rotations in [symbol]. 2.2. Spherical coordinates in p dimensions. 2.3. The sphere in higher dimensions. 2.4. Arc length in spherical coordinates. 2.5. The divergence theorem in EP. 2.6. [symbol] in spherical coordinates. 2.7. Problems -- 3. Orthogonal polymials. 3.1. Orthogonality and expansions. 3.2. The recurrence formula. 3.3. The Rodrigues formula. 3.4. Approximations by polynomials. 3.5.Hilbert space and completeness. 3.6. Problems -- 4. Spherical harmonics in p dimensions. 4.1. Harmonic homogeneous polynomials. 4.2. Spherical harmonics and orthogonality. 4.3. Legendre polynomials. 4.4. Boundary value problems. 4.5. Problems -- 5. Solutions to problems. 5.1. Solutions to problems of chapter 2. 5.2. Solutions to problems of chapter 3. 5.3. Solutions to problems of chapter 4 | |
505 | 8 | |a The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter | |
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 7 | |a Legendre's polynomials |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Spherical functions |2 fast | |
650 | 7 | |a Spherical harmonics |2 fast | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Spherical harmonics | |
650 | 4 | |a Spherical functions | |
650 | 4 | |a Legendre's polynomials | |
650 | 4 | |a Mathematical physics | |
650 | 0 | 7 | |a Kugelflächenfunktion |0 (DE-588)4191652-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kugelflächenfunktion |0 (DE-588)4191652-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Frye, Christopher |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Efthimiou, Costas, author |t Spherical harmonics in p dimensions |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028454960 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175386052919296 |
---|---|
any_adam_object | |
author | Efthimiou, Costas |
author_facet | Efthimiou, Costas |
author_role | aut |
author_sort | Efthimiou, Costas |
author_variant | c e ce |
building | Verbundindex |
bvnumber | BV043030308 |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Separation of variables. 1.2. Quantum mechanical angular momentum -- 2. Working in p dimensions. 2.1 Rotations in [symbol]. 2.2. Spherical coordinates in p dimensions. 2.3. The sphere in higher dimensions. 2.4. Arc length in spherical coordinates. 2.5. The divergence theorem in EP. 2.6. [symbol] in spherical coordinates. 2.7. Problems -- 3. Orthogonal polymials. 3.1. Orthogonality and expansions. 3.2. The recurrence formula. 3.3. The Rodrigues formula. 3.4. Approximations by polynomials. 3.5.Hilbert space and completeness. 3.6. Problems -- 4. Spherical harmonics in p dimensions. 4.1. Harmonic homogeneous polynomials. 4.2. Spherical harmonics and orthogonality. 4.3. Legendre polynomials. 4.4. Boundary value problems. 4.5. Problems -- 5. Solutions to problems. 5.1. Solutions to problems of chapter 2. 5.2. Solutions to problems of chapter 3. 5.3. Solutions to problems of chapter 4 The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter |
ctrlnum | (OCoLC)886539897 (DE-599)BVBBV043030308 |
dewey-full | 515/.785 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.785 |
dewey-search | 515/.785 |
dewey-sort | 3515 3785 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03769nmm a2200589zc 4500</leader><controlfield tag="001">BV043030308</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814596695</subfield><subfield code="9">978-981-4596-69-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814596701</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4596-70-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814596698</subfield><subfield code="9">981-4596-69-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814596701</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4596-70-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)886539897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043030308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.785</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Efthimiou, Costas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spherical harmonics in p dimensions</subfield><subfield code="c">Costas Efthimiou, Christopher Frye</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ; Hackensack, NJ</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 143 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction. 1.1. Separation of variables. 1.2. Quantum mechanical angular momentum -- 2. Working in p dimensions. 2.1 Rotations in [symbol]. 2.2. Spherical coordinates in p dimensions. 2.3. The sphere in higher dimensions. 2.4. Arc length in spherical coordinates. 2.5. The divergence theorem in EP. 2.6. [symbol] in spherical coordinates. 2.7. Problems -- 3. Orthogonal polymials. 3.1. Orthogonality and expansions. 3.2. The recurrence formula. 3.3. The Rodrigues formula. 3.4. Approximations by polynomials. 3.5.Hilbert space and completeness. 3.6. Problems -- 4. Spherical harmonics in p dimensions. 4.1. Harmonic homogeneous polynomials. 4.2. Spherical harmonics and orthogonality. 4.3. Legendre polynomials. 4.4. Boundary value problems. 4.5. Problems -- 5. Solutions to problems. 5.1. Solutions to problems of chapter 2. 5.2. Solutions to problems of chapter 3. 5.3. Solutions to problems of chapter 4</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Legendre's polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spherical functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spherical harmonics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Legendre's polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kugelflächenfunktion</subfield><subfield code="0">(DE-588)4191652-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kugelflächenfunktion</subfield><subfield code="0">(DE-588)4191652-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frye, Christopher</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Efthimiou, Costas, author</subfield><subfield code="t">Spherical harmonics in p dimensions</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028454960</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043030308 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:15:27Z |
institution | BVB |
isbn | 9789814596695 9789814596701 9814596698 9814596701 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028454960 |
oclc_num | 886539897 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xii, 143 pages) illustrations |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | World Scientific |
record_format | marc |
spelling | Efthimiou, Costas Verfasser aut Spherical harmonics in p dimensions Costas Efthimiou, Christopher Frye Singapore ; Hackensack, NJ World Scientific [2014] 1 online resource (xii, 143 pages) illustrations txt rdacontent c rdamedia cr rdacarrier Description based on print version record 1. Introduction. 1.1. Separation of variables. 1.2. Quantum mechanical angular momentum -- 2. Working in p dimensions. 2.1 Rotations in [symbol]. 2.2. Spherical coordinates in p dimensions. 2.3. The sphere in higher dimensions. 2.4. Arc length in spherical coordinates. 2.5. The divergence theorem in EP. 2.6. [symbol] in spherical coordinates. 2.7. Problems -- 3. Orthogonal polymials. 3.1. Orthogonality and expansions. 3.2. The recurrence formula. 3.3. The Rodrigues formula. 3.4. Approximations by polynomials. 3.5.Hilbert space and completeness. 3.6. Problems -- 4. Spherical harmonics in p dimensions. 4.1. Harmonic homogeneous polynomials. 4.2. Spherical harmonics and orthogonality. 4.3. Legendre polynomials. 4.4. Boundary value problems. 4.5. Problems -- 5. Solutions to problems. 5.1. Solutions to problems of chapter 2. 5.2. Solutions to problems of chapter 3. 5.3. Solutions to problems of chapter 4 The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Legendre's polynomials fast Mathematical physics fast Spherical functions fast Spherical harmonics fast Mathematische Physik Spherical harmonics Spherical functions Legendre's polynomials Mathematical physics Kugelflächenfunktion (DE-588)4191652-9 gnd rswk-swf Kugelflächenfunktion (DE-588)4191652-9 s 1\p DE-604 Frye, Christopher Sonstige oth Erscheint auch als Druck-Ausgabe Efthimiou, Costas, author Spherical harmonics in p dimensions http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Efthimiou, Costas Spherical harmonics in p dimensions 1. Introduction. 1.1. Separation of variables. 1.2. Quantum mechanical angular momentum -- 2. Working in p dimensions. 2.1 Rotations in [symbol]. 2.2. Spherical coordinates in p dimensions. 2.3. The sphere in higher dimensions. 2.4. Arc length in spherical coordinates. 2.5. The divergence theorem in EP. 2.6. [symbol] in spherical coordinates. 2.7. Problems -- 3. Orthogonal polymials. 3.1. Orthogonality and expansions. 3.2. The recurrence formula. 3.3. The Rodrigues formula. 3.4. Approximations by polynomials. 3.5.Hilbert space and completeness. 3.6. Problems -- 4. Spherical harmonics in p dimensions. 4.1. Harmonic homogeneous polynomials. 4.2. Spherical harmonics and orthogonality. 4.3. Legendre polynomials. 4.4. Boundary value problems. 4.5. Problems -- 5. Solutions to problems. 5.1. Solutions to problems of chapter 2. 5.2. Solutions to problems of chapter 3. 5.3. Solutions to problems of chapter 4 The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Legendre's polynomials fast Mathematical physics fast Spherical functions fast Spherical harmonics fast Mathematische Physik Spherical harmonics Spherical functions Legendre's polynomials Mathematical physics Kugelflächenfunktion (DE-588)4191652-9 gnd |
subject_GND | (DE-588)4191652-9 |
title | Spherical harmonics in p dimensions |
title_auth | Spherical harmonics in p dimensions |
title_exact_search | Spherical harmonics in p dimensions |
title_full | Spherical harmonics in p dimensions Costas Efthimiou, Christopher Frye |
title_fullStr | Spherical harmonics in p dimensions Costas Efthimiou, Christopher Frye |
title_full_unstemmed | Spherical harmonics in p dimensions Costas Efthimiou, Christopher Frye |
title_short | Spherical harmonics in p dimensions |
title_sort | spherical harmonics in p dimensions |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Legendre's polynomials fast Mathematical physics fast Spherical functions fast Spherical harmonics fast Mathematische Physik Spherical harmonics Spherical functions Legendre's polynomials Mathematical physics Kugelflächenfunktion (DE-588)4191652-9 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Legendre's polynomials Mathematical physics Spherical functions Spherical harmonics Mathematische Physik Kugelflächenfunktion |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=824749 |
work_keys_str_mv | AT efthimioucostas sphericalharmonicsinpdimensions AT fryechristopher sphericalharmonicsinpdimensions |