Feynman-Kac-type theorems and Gibbs measures on path space:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
[2020-2020]
|
Ausgabe: | 2nd edition |
Schriftenreihe: | De Gruyter Studies in Mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 2 Bände |
Internformat
MARC
LEADER | 00000nam a2200000 ca4500 | ||
---|---|---|---|
001 | BV042905886 | ||
003 | DE-604 | ||
005 | 20220915 | ||
007 | t | ||
008 | 151005s2020 gw |||| 00||| eng d | ||
015 | |a 14,N39 |2 dnb | ||
016 | 7 | |a 1058497618 |2 DE-101 | |
035 | |a (DE-599)DNB1058497618 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
082 | 0 | |a 510 |2 23 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a UK 4500 |0 (DE-625)145802: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Lőrinczi, József |d 1966- |e Verfasser |0 (DE-588)173059767 |4 aut | |
245 | 1 | 0 | |a Feynman-Kac-type theorems and Gibbs measures on path space |c József Lőrinczi, Fumio Hiroshima, and Volker Betz |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin |b De Gruyter |c [2020-2020] | |
300 | |a 2 Bände | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a De Gruyter Studies in Mathematics | |
650 | 0 | 7 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Feynman-Kac-Formel |0 (DE-588)4820124-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gibbs-Maß |0 (DE-588)4157328-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Analysis |0 (DE-588)4132272-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
653 | |a Feynman-Kac-TypeTheorems; Gibbs Measures; Quantum Field Theory; Brownian Motion | ||
689 | 0 | 0 | |a Selbstadjungierter Operator |0 (DE-588)4180810-1 |D s |
689 | 0 | 1 | |a Feynman-Kac-Formel |0 (DE-588)4820124-8 |D s |
689 | 0 | 2 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | 3 | |a Gibbs-Maß |0 (DE-588)4157328-6 |D s |
689 | 0 | 4 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 5 | |a Stochastische Analysis |0 (DE-588)4132272-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hiroshima, Fumio |e Verfasser |0 (DE-588)1016708270 |4 aut | |
700 | 1 | |a Betz, Volker |d 1972- |e Verfasser |0 (DE-588)123809568 |4 aut | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028333863&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028333863 |
Datensatz im Suchindex
_version_ | 1804175201041121280 |
---|---|
adam_text | CONTENTS
PREFACE
TO
THE
SECOND
EDITION
*
IX
PREFACE
TO
THE
FIRST
EDITION
*
XI
1
HEURISTICS
AND
HISTORY
*
1
1.1
FEYNMAN
PATH
INTEGRALS
AND
FEYNMAN-KAC
FORMULAE
*
1
1.2
PLAN
AND
SCOPE
OF
THE
SECOND
EDITION
*
5
2
BROWNIAN
MOTION
*
9
2.1
CONCEPTS
AND
FACTS
OF
GENERAL
MEASURE
THEORY
AND
PROBABILITY
*
9
2.1.1
ELEMENTS
OF
GENERAL
MEASURE
THEORY
*
9
2.1.2
PROBABILITY
MEASURES
AND
LIMIT
THEOREMS
*
16
2.1.3
RANDOM
VARIABLES
*
29
2.1.4
CONDITIONAL
EXPECTATION
AND
REGULAR
CONDITIONAL
PROBABILITY
MEASURES
*
38
2.2
RANDOM
PROCESSES
------
45
2.2.1
BASIC
CONCEPTS
AND
FACTS
*
45
2.2.2
MARTINGALE
PROPERTIES
-----
50
2.2.3
STOPPING
TIMES
AND
OPTIONAL
SAMPLING
*
53
2.2.4
MARKOV
PROPERTIES
-----
67
2.2.5
FELLER
TRANSITION
KERNELS
AND
GENERATORS
*
72
2.2.6
INVARIANT
MEASURES
*
74
2.3
BROWNIAN
MOTION
AND
WIENER
MEASURE
*
77
2.3.1
CONSTRUCTION
OF
BROWNIAN
MOTION
*
77
2.3.2
TWO-SIDED
BROWNIAN
MOTION
-----
84
2.3.3
CONDITIONAL
WIENER
MEASURE
*
88
2.3.4
MARTINGALE
PROPERTIES
OF
BROWNIAN
MOTION
*
89
2.3.5
MARKOV
PROPERTIES
OF
BROWNIAN
MOTION
*
92
2.3.6
LOCAL
PATH
PROPERTIES
OF
BROWNIAN
MOTION
*
97
2.3.7
GLOBAL
PATH
PROPERTIES
OF
BROWNIAN
MOTION
*
103
2.4
STOCHASTIC
CALCULUS
BASED
ON
BROWNIAN
MOTION
*
107
2.4.1
THE
CLASSICAL
INTEGRAL
AND
ITS
EXTENSIONS
*
107
2.4.2
STOCHASTIC
INTEGRALS
*
108
2.4.3
EXTENSION
OF
STOCHASTIC
INTEGRALS
*
115
2.4.4
LTD
FORMULA
-----
119
2.4.5
STOCHASTIC
DIFFERENTIAL
EQUATIONS
*
128
2.4.6
BROWNIAN
BRIDGE
*
134
2.4.7
WEAK
SOLUTION
AND
TIME
CHANGE
*
136
2.4.8
GIRSANOV
THEOREM
AND
CAMERON-MARTIN
FORMULA
*
140
VI
*
CONTENTS
3
L6VY
PROCESSES
*
143
3.1
LEVY
PROCESSES
AND
THE
LEVY-KHINTCHINE
FORMULA
*
143
3.1.1
INFINITELY
DIVISIBLE
RANDOM
VARIABLES
*
143
3.1.2
LEVY-KHINTCHINE
FORMULA
-----
149
3.1.3
LEVY
PROCESSES
*
154
3.1.4
MARTINGALE
PROPERTIES
OF
LEVY
PROCESSES
*
160
3.1.5
MARKOV
PROPERTIES
OF
LEVY
PROCESSES
*
161
3.2
SAMPLE
PATH
PROPERTIES
OF
LEVY
PROCESSES
*
165
3.2.1
CADLAG
VERSION
*
165
3.2.2
TWO-SIDED
LEVY
PROCESSES
*
169
3.3
RANDOM
MEASURES
AND
LEVY-LTD
DECOMPOSITION
-----
178
3.3.1
POISSON
RANDOM
MEASURES
*
178
3.3.2
LEVY-LTD
DECOMPOSITION
*
186
3.4
LTD
FORMULA
FOR
SEMIMARTINGALES
*
188
3.4.1
POINT
PROCESSES
*
188
3.4.2
LTD
FORMULA
FOR
SEMIMARTINGALES
*
194
3.5
EXPONENTIALS
OF
LEVY
PROCESSES
AND
RECURRENCE
PROPERTIES
*
201
3.5.1
EXPONENTIAL
FUNCTIONALS
OF
LEVY
PROCESSES
*
201
3.5.2
CAPACITARY
MEASURES
*
203
3.5.3
RECURRENCE
PROPERTIES
OF
LEVY
PROCESSES
*
204
3.6
SUBORDINATES
AND
BERNSTEIN
FUNCTIONS
*
206
3.6.1
SUBORDINATES
AND
SUBORDINATE
BROWNIAN
MOTION
-----
206
3.6.2
BERNSTEIN
FUNCTIONS
*
209
4
FEYNMAN-KAC
FORMULAE
*
217
4.1
SCHRODINGER
SEMIGROUPS
*
217
4.1.1
SCHRODINGER EQUATION
AND
PATH
INTEGRAL
SOLUTIONS
*
217
4.1.2
LINEAR
OPERATORS
AND
THEIR
SPECTRA
*
218
4.1.3
SPECTRAL
RESOLUTION
*
223
4.1.4
COMPACT
OPERATORS
AND
TRACE
IDEALS
*
227
4.1.5
SCHRODINGER
OPERATORS
*
232
4.1.6
SCHRODINGER
OPERATORS
THROUGH
QUADRATIC
FORMS
*
236
4.1.7
CONFINING
POTENTIALS
AND
DECAYING
POTENTIALS
*
239
4.1.8
STRONGLY
CONTINUOUS
OPERATOR
SEMIGROUPS
*
243
4.2
FEYNMAN-KAC
FORMULA
FOR
SCHRODINGER
OPERATORS
*
246
4.2.1
BOUNDED
SMOOTH
EXTERNAL
POTENTIALS
*
246
4.2.2
DERIVATION
THROUGH
THE
TROTTER
PRODUCT
FORMULA
*
249
4.2.3
KATO-CLASS
POTENTIALS
*
251
4.2.4
FEYNMAN-KAC
FORMULA
FOR
KATO-DECOMPOSABLE
POTENTIALS
*
264
4.3
PROPERTIES
OF
SCHRODINGER
OPERATORS
AND
SEMIGROUPS
-----
270
4.3.1
KERNEL
OF
THE
SCHRODINGER
SEMIGROUP
-----
270
4.3.2
POSITIVITY
IMPROVING
AND
UNIQUENESS
OF
GROUND
STATE
*
271
CONTENTS
*
VII
4.3.3
DEGENERATE
GROUND
STATE
AND
KLAUDER
PHENOMENON
*
275
4.3.4
EXISTENCE
AND
NON-EXISTENCE
OF
GROUND
STATES
*
277
4.3.5
SOJOURN
TIMES
AND
EXISTENCE
OF
BOUND
STATES
*
282
4.3.6
THE
NUMBER
OF
EIGENFUNCTIONS
WITH
NEGATIVE
EIGENVALUES
*
289
4.3.7
APPLICATION
TO
CANONICAL
COMMUTATION
RELATIONS
*
307
4.3.8
EXPONENTIAL
DECAY
OF
EIGENFUNCTIONS
*
314
4.4
FEYNMAN-KAC
FORMULA
FOR
SCHRODINGER
OPERATORS
WITH
VECTOR
POTENTIALS
-----
320
4.4.1
FEYNMAN-KAC-LTO
FORMULA
-----
320
4.4.2
ALTERNATIVE
PROOF
OF
THE
FEYNMAN-KAC-LTO
FORMULA
*
324
4.4.3
EXTENSION
TO
SINGULAR
EXTERNAL
AND
VECTOR
POTENTIALS
-----
327
4.4.4
KATO-CLASS
POTENTIALS
AND
L
P
-L
Q
BOUNDEDNESS
-----
333
4.5
FEYNMAN-KAC
FORMULA
FOR
UNBOUNDED
SEMIGROUPS
AND
STARK
EFFECT
-----
335
4.6
FEYNMAN-KAC
FORMULA
FOR
RELATIVISTIC
SCHRODINGER
OPERATORS
*
339
4.6.1
RELATIVISTIC
SCHRODINGER
OPERATOR
-----339
4.6.2
RELATIVISTIC
KATO-CLASS
POTENTIALS
*
344
4.6.3
DECAY
OF
EIGENFUNCTIONS
-----
351
4.6.4
NON-RELATIVISTIC
LIMIT
-----
356
4.7
FEYNMAN-KAC
FORMULA
FOR
SCHRODINGER
OPERATORS
WITH
SPIN
*
359
4.7.1
SCHRODINGER
OPERATORS
WITH
SPIN
J
*
359
4.7.2
A
JUMP
PROCESS
-----
361
4.7.3
FEYNMAN-KAC
FORMULA
FOR
THE
JUMP
PROCESS
*
363
4.7.4
EXTENSION
TO
SINGULAR
EXTERNAL
POTENTIALS
AND
SINGULAR
VECTOR
POTENTIALS
*
367
4.7.5
DECAY
OF
EIGENFUNCTIONS
AND
MARTINGALE
PROPERTIES
*
371
4.8
FEYNMAN-KAC
FORMULA
FOR
RELATIVISTIC
SCHRODINGER
OPERATORS
WITH
SPIN
-----
375
4.8.1
RELATIVISTIC
SCHRODINGER
OPERATOR
WITH
SPIN
|
-----
375
4.8.2
MARTINGALE
PROPERTIES
-----
381
4.8.3
DECAY
OF
EIGENFUNCTIONS
-----
384
4.9
FEYNMAN-KAC
FORMULA
FOR
NONLOCAL
SCHRODINGER
OPERATORS
-----
388
4.9.1
NONLOCAL
SCHRODINGER
OPERATORS
-----
388
4.9.2
VECTOR
POTENTIALS
----
389
4.9.3
IP-KATO-CLASS
POTENTIALS
-----
392
4.9.4
FRACTIONAL
KATO-CLASS
POTENTIALS
*
401
4.9.5
GENERALIZED
SPIN
----
406
4.9.6
RECURRENCE
PROPERTIES
AND
EXISTENCE
OF
BOUND
STATES
*
412
4.9.7
THE
NUMBER
OF
EIGENFUNCTIONS
WITH
NEGATIVE
EIGENVALUES
*
413
4.9.8
DECAY
OF
EIGENFUNCTIONS
-----
423
4.9.9
MASSLESS
RELATIVISTIC
HARMONIC
OSCILLATOR
-----432
4.9.10
EMBEDDED
EIGENVALUES
*
436
VIII
*
CONTENTS
BIBLIOGRAPHY
*
539
5
5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.4
GIBBS
MEASURES
ASSOCIATED
WITH
FEYNMAN-KAC
SEMIGROUPS
*
449
GROUND
STATE
TRANSFORM
AND
RELATED
PROCESSES
*
449
GROUND
STATE
TRANSFORM
AND
THE
INTRINSIC
SEMIGROUP
*
449
GROUND
STATE-TRANSFORMED
PROCESSES
AS
SOLUTIONS
OF
SDE
*
454
P(0)
R
PROCESSES
WITH
CONTINUOUS
PATHS
*
458
DIRICHLET
PRINCIPLE
*
464
MEHLER
*
S
FORMULA
*
467
P(0)RPROCESSES
WITH
CADLAG
PATHS
*
476
GIBBS
MEASURES
ON
PATH
SPACE
*
481
FROM
FEYNMAN-KAC
FORMULAE
TO
GIBBS
MEASURES
*
481
GIBBS
MEASURES
ON
BROWNIAN
PATHS
*
485
GIBBS
MEASURES
ON
CADLAG
PATHS
*
492
GIBBS
MEASURES
FOR
EXTERNAL
POTENTIALS
*
494
EXISTENCE
*
494
UNIQUENESS
*
497
GIBBS
MEASURES
FOR
EXTERNAL
AND
PAIR
INTERACTION
POTENTIALS:
DIRECT
METHOD
*
503
5.5
GIBBS
MEASURES
FOR
EXTERNAL
AND
PAIR
INTERACTION
POTENTIALS:
CLUSTER
EXPANSION
*
511
5.5.1
5.5.2
5.5.3
CLUSTER
REPRESENTATION
*
511
BASIC
ESTIMATES
AND
CONVERGENCE
OF
CLUSTER
EXPANSION
*
516
FURTHER
PROPERTIES
OF
THE
GIBBS
MEASURE
*
518
6
NOTES
AND
REFERENCES
*
521
NOTES
TO
THE
PREFACE
*
521
NOTES
TO
CHAPTER
1
*
522
NOTES
TO
CHAPTER
2
*
522
NOTES
TO
CHAPTER
3
*
525
NOTES
TO
CHAPTER
4
*
526
NOTES
TO
CHAPTER
5
*
535
INDEX
*
553
|
any_adam_object | 1 |
author | Lőrinczi, József 1966- Hiroshima, Fumio Betz, Volker 1972- |
author_GND | (DE-588)173059767 (DE-588)1016708270 (DE-588)123809568 |
author_facet | Lőrinczi, József 1966- Hiroshima, Fumio Betz, Volker 1972- |
author_role | aut aut aut |
author_sort | Lőrinczi, József 1966- |
author_variant | j l jl f h fh v b vb |
building | Verbundindex |
bvnumber | BV042905886 |
classification_rvk | SK 620 SK 540 SK 820 SK 910 UK 4500 |
ctrlnum | (DE-599)DNB1058497618 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02377nam a2200565 ca4500</leader><controlfield tag="001">BV042905886</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220915 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">151005s2020 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,N39</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1058497618</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1058497618</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 4500</subfield><subfield code="0">(DE-625)145802:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lőrinczi, József</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173059767</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feynman-Kac-type theorems and Gibbs measures on path space</subfield><subfield code="c">József Lőrinczi, Fumio Hiroshima, and Volker Betz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2020-2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">2 Bände</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="0">(DE-588)4820124-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Feynman-Kac-TypeTheorems; Gibbs Measures; Quantum Field Theory; Brownian Motion</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Feynman-Kac-Formel</subfield><subfield code="0">(DE-588)4820124-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gibbs-Maß</subfield><subfield code="0">(DE-588)4157328-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Stochastische Analysis</subfield><subfield code="0">(DE-588)4132272-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hiroshima, Fumio</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1016708270</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Betz, Volker</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123809568</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028333863&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028333863</subfield></datafield></record></collection> |
id | DE-604.BV042905886 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:12:31Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028333863 |
open_access_boolean | |
physical | 2 Bände |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Studies in Mathematics |
spelling | Lőrinczi, József 1966- Verfasser (DE-588)173059767 aut Feynman-Kac-type theorems and Gibbs measures on path space József Lőrinczi, Fumio Hiroshima, and Volker Betz 2nd edition Berlin De Gruyter [2020-2020] 2 Bände txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematics Selbstadjungierter Operator (DE-588)4180810-1 gnd rswk-swf Feynman-Kac-Formel (DE-588)4820124-8 gnd rswk-swf Gibbs-Maß (DE-588)4157328-6 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Stochastische Analysis (DE-588)4132272-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Feynman-Kac-TypeTheorems; Gibbs Measures; Quantum Field Theory; Brownian Motion Selbstadjungierter Operator (DE-588)4180810-1 s Feynman-Kac-Formel (DE-588)4820124-8 s Pfadintegral (DE-588)4173973-5 s Gibbs-Maß (DE-588)4157328-6 s Quantenfeldtheorie (DE-588)4047984-5 s Stochastische Analysis (DE-588)4132272-1 s DE-604 Hiroshima, Fumio Verfasser (DE-588)1016708270 aut Betz, Volker 1972- Verfasser (DE-588)123809568 aut DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028333863&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lőrinczi, József 1966- Hiroshima, Fumio Betz, Volker 1972- Feynman-Kac-type theorems and Gibbs measures on path space Selbstadjungierter Operator (DE-588)4180810-1 gnd Feynman-Kac-Formel (DE-588)4820124-8 gnd Gibbs-Maß (DE-588)4157328-6 gnd Pfadintegral (DE-588)4173973-5 gnd Stochastische Analysis (DE-588)4132272-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4180810-1 (DE-588)4820124-8 (DE-588)4157328-6 (DE-588)4173973-5 (DE-588)4132272-1 (DE-588)4047984-5 |
title | Feynman-Kac-type theorems and Gibbs measures on path space |
title_auth | Feynman-Kac-type theorems and Gibbs measures on path space |
title_exact_search | Feynman-Kac-type theorems and Gibbs measures on path space |
title_full | Feynman-Kac-type theorems and Gibbs measures on path space József Lőrinczi, Fumio Hiroshima, and Volker Betz |
title_fullStr | Feynman-Kac-type theorems and Gibbs measures on path space József Lőrinczi, Fumio Hiroshima, and Volker Betz |
title_full_unstemmed | Feynman-Kac-type theorems and Gibbs measures on path space József Lőrinczi, Fumio Hiroshima, and Volker Betz |
title_short | Feynman-Kac-type theorems and Gibbs measures on path space |
title_sort | feynman kac type theorems and gibbs measures on path space |
topic | Selbstadjungierter Operator (DE-588)4180810-1 gnd Feynman-Kac-Formel (DE-588)4820124-8 gnd Gibbs-Maß (DE-588)4157328-6 gnd Pfadintegral (DE-588)4173973-5 gnd Stochastische Analysis (DE-588)4132272-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Selbstadjungierter Operator Feynman-Kac-Formel Gibbs-Maß Pfadintegral Stochastische Analysis Quantenfeldtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028333863&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lorinczijozsef feynmankactypetheoremsandgibbsmeasuresonpathspace AT hiroshimafumio feynmankactypetheoremsandgibbsmeasuresonpathspace AT betzvolker feynmankactypetheoremsandgibbsmeasuresonpathspace |