Thermal radiation heat transfer:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2016]
|
Ausgabe: | Sixth edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxxiv, 982 Seiten Illustrationen, Diagramme |
ISBN: | 9781466593268 |
Internformat
MARC
LEADER | 00000nam a22000002c 4500 | ||
---|---|---|---|
001 | BV042772543 | ||
003 | DE-604 | ||
005 | 20160909 | ||
007 | t | ||
008 | 150821s2016 a||| |||| 00||| eng d | ||
020 | |a 9781466593268 |c hbk. |9 978-1-4665-9326-8 | ||
035 | |a (OCoLC)932261807 | ||
035 | |a (DE-599)BVBBV042772543 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 | ||
082 | 0 | |a 536.33 | |
082 | 0 | |a 621.402/2 | |
084 | |a UG 2800 |0 (DE-625)145621: |2 rvk | ||
084 | |a PHY 052f |2 stub | ||
084 | |a MTA 790f |2 stub | ||
100 | 1 | |a Howell, John R. |d 1936- |e Verfasser |0 (DE-588)115258264 |4 aut | |
245 | 1 | 0 | |a Thermal radiation heat transfer |c John R. Howell, M. Pinar Mengüç, Robert Siegel |
250 | |a Sixth edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2016] | |
300 | |a xxxiv, 982 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Wärmestrahlung |0 (DE-588)4188872-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieabsorber |0 (DE-588)4152211-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wärmestrahlung |0 (DE-588)4188872-8 |D s |
689 | 0 | 1 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Energieabsorber |0 (DE-588)4152211-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Mengüç, M. Pinar |e Verfasser |4 aut | |
700 | 1 | |a Siegel, Robert |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028202809&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-028202809 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804174997975990272 |
---|---|
adam_text | Contents
Preface.............................................................................xxi
Authors.............................................................................xxv
List of Symbols...................................................................xxvii
Chapter 1 Introduction to Radiative Transfer.............................................1
1.1 Importance of Thermal Radiation in Engineering..........................3
1.2 Thermal Energy Transfer.................................................5
1.3 Thermal Radiative Transfer..............................................7
1.4 Radiative Energy Exchange and Radiative Intensity.......................9
1.4.1 Solid Angle...................................................10
1.4.2 Spectral Radiative Intensity..................................11
1.5 Characteristics of Emission............................................12
1.5.1 Perfect Emitter ..............................................14
1.5.2 Radiation Isotropy in a Black Enclosure.......................15
1.5.3 Perfect Emitter in Each Direction and Wavelength..............15
1.5.4 Total Radiation into Vacuum...................................15
1.5.5 Blackbody Intensity and Its Directional Independence..........16
1.5.6 Blackbody Emissive Power: Cosine-Law Dependence...............17
1.5.7 Hemispherical Spectral Emissive Power of a Blackbody..........18
1.5.8 Planck Law: Spectral Distribution of Emissive Power...........18
1.5.9 Approximations for Blackbody Spectral Distribution............22
1.5.9.1 Wien’s Formula........................................23
1.5.9.2 Rayleigh-Jeans Formula................................23
1.5.10 Wien’s Displacement Law.......................................23
1.5.11 Total Blackbody Intensity and Emissive Power..................24
1.5.12 Blackbody Radiation within a Spectral Band....................26
1.5.13 Summary of Blackbody Properties...............................30
1.6 Radiative Energy along a Line-of-Sight.................................34
1.6.1 Radiative Energy Loss due to Absorption and Scattering........34
1.6.2 Mean Penetration Distance.....................................36
1.6.3 Optical Thickness.............................................37
1.6.4 Radiative Energy Gain due to Emission....................... 37
1.6.5 Radiative Energy Density and Radiation Pressure...............39
1.6.6 Radiative Energy Gain due to In-Scattering....................40
1.7 Radiative Transfer Equation............................................41
1.8 Radiative Transfer in Enclosures with Nonparticipating Media...........42
1.9 Concluding Remarks and Historical Notes................................46
Homework....................................................................46
VII
vjjj Contents
Chapter 2 Radiative Properties at Interfaces.....................................................51
2.1 Introduction..............................................................51
2.2 Emissivity................................................................54
2.2.1 Directional Spectral Emissivity ex(0, (j), T).....................55
2.2.2 Directional Total Emissivity e(0, 4 , T)..........................57
2.2.3 Hemispherical Spectral Emissivity ek(T)...........................58
2.2.4 Hemispherical Total Emissivity e(T)...............................59
2.3 Absorptivity..............................................................63
2.3.1 Directional Spectral Absorptivity 0^(0,-, T)........................63
2.3.2 Kirchhoff s Law................................................. 64
2.3.3 Directional Total Absorptivity a(0z, cj),, T).....................65
2.3.4 Kirchhoff’s Law for Directional Total Properties..................65
2.3.5 Hemispherical Spectral Absorptivity aX(D..........................66
2.3.6 Hemispherical Total Absorptivity a(T).............................67
2.3.7 Diffuse-Gray Surface..............................................69
2.4 Reflectivity..............................................................70
2.4.1 Spectral Reflectivities...........................................70
2.4.1.1 Bidirectional Spectral Reflectivity px(0r, cj)r, 0 , k)...70
2.4.1.2 Reciprocity for Bidirectional Spectral Reflectivity.....71
2.4.1.3 Directional Spectral Reflectivities......................72
2.4.1.4 Reciprocity for Directional Spectral Reflectivity..........73
2.4.1.5 Hemispherical Spectral Reflectivity px(A)..................73
2.4.1.6 Limiting Cases for Spectral Surfaces...................74
2.4.2 Total Reflectivities..............................................75
2.4.2.1 Bidirectional Total Reflectivity (J)^ 0f, ..............75
2.4.2.2 Reciprocity for Bidirectional Total Reflectivity.........76
2.4.2.3 Directional Total Reflectivity p(0z, )t) = p(0r, $r).....76
2.4.2.4 Reciprocity for Directional Total Reflectivity...........77
2.4.2.5 Hemispherical Total Reflectivity, p......................77
2.4.3 Summary of Restrictions on Reflectivity Reciprocity Relations.......77
2.5 Transmissivity at an Interface.........................................78
2.5.1 Spectral Transmissivities.........................................78
2.5.1.1 Bidirectional Spectral Transmissivity xx(0„ ()„ 0f, ( ,).78
2.5.1.2 Directional Spectral Transmissivities, xx(0y, cj)^.......78
2.5.1.3 Hemispherical Spectral Transmissivity xx.................79
2.5.2 Total Transmissivities............................................80
2.5.2.1 Bidirectional Total Transmissivity x(0„ cj £, 0„ (| ,).....80
2.5.2.2 Directional Total Transmissivities, x(0,, (^¿)...........80
2.5.2.3 Hemispherical-Directional Total Transmissivity x(0„ 80
2.5.2.4 Hemispherical Total Transmissivity, .....................81
2.6 Relations among Reflectivity, Absorptivity, Emissivity, and Transmissivity..82
Homework........................................................................85
Chapter 3 Radiative Properties of Opaque Materials...........................................91
3.1 Introduction..............................................................91
3.2 Electromagnetic Wave Theory Predictions...................................91
3.2.1 Dielectric Materials............................................ 92
3.2.1.1 Reflection and Refraction at the Interface between
Two Perfect Dielectrics (No Wave Attenuation, k —► 0).....92
Contents
IX
3.2.1.2 Reflectivity...........................................94
3.2.1.3 Emissivity.............................................96
3.2.2 Radiative Properties of Metals..................................98
3.2.2.1 Electromagnetic Relations for Incidence
on an Absorbing Medium.................................98
3.2.2.2 Reflectivity and Emissivity Relations for Metals
(Large k).............................................100
3.2.2.3 Relations between Radiative Emission and Electrical
Properties............................................104
3.3 Extensions of the Theory for Radiative Properties.....................109
3.4 Measured Properties of Real Dielectric Materials......................110
3.4.1 Variation of Total Properties with Surface Temperature.........113
3.4.1.1 Effect of Surface Roughness...........................116
3.4.2 Properties of Semiconductors and Superconductors...............119
3.5 Measured Properties of Metals..........................................121
3.5.1 Directional and Spectral Variations............................121
3.5.2 Effect of Surface Temperature..................................123
3.5.3 Effect of Surface Roughness.................................. 124
3.5.4 Effect of Surface Impurities...................................129
3.5.5 Molten Metals..................................................131
3.6 Selective and Directional Opaque Surfaces..............................135
3.6.1 Characteristics of Solar Radiation.............................135
3.6.1.1 Solar Constant........................................135
3.6.1.2 Solar Radiating Temperature...........................136
3.6.2 Modification of Surface Spectral Characteristics...............136
3.6.3 Modification of Surface Directional Characteristics............142
3.7 Concluding Remarks.....................................................144
Homework.....................................................................144
Chapter 4 Configuration Factors for Diffuse Surfaces with Uniform Radiosity..............155
4.1 Radiative Transfer Equation for Surfaces Separated by a Transparent
Medium.................................................................155
4.1.1 Enclosures with Diffuse Surfaces...............................156
4.1.2 Enclosures with Directional (Nondiffuse) and Spectral
(Nongray) Surfaces.............................................157
4.2 Geometric Configuration Factors between Two Surfaces...................157
4.2.1 Configuration Factor for Energy Exchange between Diffuse
Differential Areas.............................................157
4.2.1.1 Reciprocity for Differential Element Configuration
Factors............................................. 159
4.2.1.2 Sample Configuration Factors between Differential
Elements..............................................159
4.2.2 Configuration Factor between a Differential Area Element
and a Finite Area..............................................162
4.2.2.1 Reciprocity Relation for Configuration Factors
between Differential and Finite Areas.................163
4.2.2.2 Configuration Factors between Differential
and Finite Areas......................................163
4.2.3 Configuration Factor and Reciprocity for Two Finite Areas.....165
X
Contents
4.3 Methods for Determining Configuration Factors.........................167
4.3.1 Configuration Factor Algebra..................................167
4.3.1.1 Configuration Factors Determined by the Use
of Symmetry...........................................171
4.3.2 Configuration Factor Relations in Enclosures..................174
4.3.3 Techniques for Evaluating Configuration Factors...............176
4.3.3.1 Hottel’s Crossed-String Method.......................176
4.3.3.2 Contour Integration..................................180
4.3.3.3 Differentiation of Known Factors.....................187
4.3.4 Unit-Sphere and Hemicube Methods..............................189
4.3.5 Direct Numerical Integration..................................190
4.3.6 Computer Programs for the Evaluation of Configuration Factors.192
4.4 Constraints on Configuration Factor Accuracy..........................192
4.5 Compilation of Known Configuration Factors and Their
References: Appendix C and Web Catalog................................194
Homework....................................................................194
Chapter 5 Radiation Exchange in Enclosures Composed of Black and/or Diffuse-Gray
Surfaces....................................................................211
5.1 Introduction...........................................................211
5.2 Radiative Transfer for Black Surfaces.................................212
5.2.1 Transfer between Black Surfaces by the Use of Configuration
Factors........................................................214
5.2.2 Radiation Exchange in a Black Enclosure........................214
5.3 Radiation between Finite Diffuse-Gray Areas............................217
5.3.1 Net-Radiation Method for Enclosures............................217
5.3.1.1 System of Equations Relating Surface Heating
Q and Surface Temperature T..........................224
5.3.1.2 Solution Method in Terms of Radiosity J..............228
5.3.2 Enclosure Analysis in Terms of Energy Absorbed at Surface......230
5.3.3 Enclosure Analysis by the Use of Transfer Factors.............232
5.3.4 Matrix Inversion for Enclosure Equations.......................233
5.4 Radiation Analysis Using Infinitesimal Areas...........................237
5.4.1 Generalized Net-Radiation Method Using Infinitesimal Areas.....237
5.4.1.1 Relations between Surface Temperature T and Surface
Heat Flux q..........................................240
5.4.1.2 Solution Method in Terms of Outgoing Radiative Flux J.241
5.4.1.3 Special Case When Imposed Heating q Is Specified
for All Surfaces.....................................242
5.4.2 Methods for Solving Integral Equations........................249
5.4.2.1 Numerical Integration................................249
5.4.2.2 Analytical Solutions.................................251
5.4.2.3 Exact Solution of Integral Equation for Radiation
from a Spherical Cavity..............................252
5.4.3 General Boundary Conditions That Provide Inverse Problems......254
5.5 Computer Programs for Enclosure Analysis...............................254
Homework....................................................................254
Contents
xi
Chapter 6 Exchange of Thermal Radiation among Nondiffuse Nongray Surfaces...............273
6.1 Introduction..........................................................273
6.2 Enclosure Theory for Diffuse Nongray Surfaces.........................273
6.2.1 Parallel-Plate Geometry.......................................274
6.2.2 Spectral and Finite Spectral Band Relations for an Enclosure.277
6.2.3 Semigray Approximations.......................................279
6.3 Directional-Gray Surfaces......................................... 280
6.4 Surfaces with Directionally and Spectrally Dependent Properties.......285
6.5 Radiation Exchange in Enclosures with Specularly Reflecting
Surfaces............................................................ 292
6.5.1 Some Situations with Simple Geometries........................292
6.5.2 Ray Tracing and the Construction of Images....................296
6.5.3 Radiative Transfer by Means of Simple Specular Surfaces
for Diffuse Energy Leaving a Surface..........................297
6.5.4 Configuration-Factor Reciprocity for Specular Surfaces;
Specular Exchange Factors.....................................302
6.6 Net-Radiation Method in Enclosures Having Both Specular and Diffuse
Reflecting Surfaces...................................................307
6.6.1 Enclosures with Planar Surfaces...............................307
6.6.2 Curved Specular Reflecting Surfaces...........................313
6.7 Multiple Radiation Shields............................................317
6.8 Concluding Remarks....................................................320
Homework...................................................................322
Chapter 7 Radiation Combined with Conduction and Convection at Boundaries.............339
7.1 Introduction.........................................................339
7.2 Energy Relations and Boundary Conditions.............................340
7.2.1 General Relations............................................340
7.2.2 Uncoupled and Coupled Energy Transfer Modes..................342
7.2.3 Control Volume Approach for ID or 2D Conduction
along Thin Walls.............................................343
7.3 Radiation Transfer with Conduction Boundary Conditions...............344
7.3.1 Thin Fins with ID or 2D Conduction......................... 344
7.3.1.1 ID Heat Flow........................................344
7.3.1.2 2D Heat Flow........................................350
7.3.2 Multidimensional and Transient Heat Conduction
with Radiation...............................................351
7.4 Radiation with Convection and Conduction.............................352
7.4.1 Thin Radiating Fins with Convection..........................353
7.4.2 Channel Flows................................................354
7.4.3 Natural Convection with Radiation............................359
7.5 Numerical Solution Methods...........................................362
7.6 Numerical Integration Methods for Use with Enclosure Equations.......362
7.7 Numerical Formulations for Combined-Mode Energy Transfer.............363
7.7.1 Finite-Difference Formulation................................365
XII
Contents
7.7.2 FEM Formulation..................................370
7.7.2.1 Shape Function......................................321
1.1.2.2 Galerkin Form for the Energy Equation...............372
7.8 Numerical Solution Techniques.......................................375
7.8.1 Successive Substitution Methods..............................376
7.8.1.1 Simple Successive Substitution.................... 376
7.8.1.2 Successive Underrelaxation..........................376
7.8.1.3 Regulated Successive Underrelaxation................377
7.8.2 Newton-Raphson-Based Methods for Nonlinear Problems..........378
7.8.2.1 Modified Newton-Raphson.............................378
7.8.2.2 Accelerated Newton-Raphson..........................378
7.8.3 Applications of the Numerical Methods........................379
7.9 Monte Carlo Method..................................................380
7.9.1 Definition of Monte Carlo Method.............................380
7.9.2 Fundamentals of the Method...................................381
7.9.2.1 Random Walk.........................................381
7.9.2.2 Choosing from Probability Distributions.............381
1,9.23 Random Numbers........................................385
7.9.2.4 Evaluation of Uncertainty...........................386
7.9.3 Application of Monte Carlo Techniques to Thermal Radiative
Transfer.....................................................387
7.9.3.1 Model of the Radiative Exchange Process.............387
7.9.3.2 Useful Functions....................................391
7.9.4 Forward Monte Carlo..........................................391
7.9.5 Reverse Monte Carlo..........................................394
7.9.6 Results for Radiative Transfer...............................398
7.9.6.1 Literature on Radiation Exchange between Surfaces...398
7.9.6.2 Radiative Transmission through the Inside
of a Channel........................................399
7.9.6.3 Extension to Directional and Spectral Surfaces......400
7.9.6.4 Application of Monte Carlo Methods
to Combined-Mode Problems...........................400
7.10 Concluding Remarks................................................ 401
7.10.1 Verification, Validation, and Uncertainty Quantification....401
7.10.1.1 Verification............................. .........401
7.10.1.2 Validation.........................................402
7.10.1.3 Uncertainty Quantification.........................402
Homework.................................................................402
Chapter 8 Inverse Problems in Radiative Heat Transfer.................................421
8.1 Introduction to Inverse Problems....................................421
8.1.1 Inverse Design and Data Analysis............................422
8.1.1.1 Direct Inverse Solutions............................423
8.2 General Inverse Solution Methods....................................426
8.2.1 Regularization...................................426
8.2.1.1 Truncated Singular Value Decomposition..............427
8.2.1.2 Conjugate Gradient Regularization...................427
8.2.1.3 Tikhonov Regularization.............................428
Contents xiii
8.2.2 Optimization................................................428
8.2.2.1 Deterministic (Quasi-Newton) Approach..............429
8.2.3 Metaheuristic Approaches....................................430
8.2.3.1 Simulated Annealing................................430
8.2.3.2 Tabu Search........................................431
8.2.3.3 Genetic Algorithm..................................431
8.3 Comparison of Methods for a Particular Problem......................431
8.3.1 Solution by Direct Inversion................................433
8.3.1.1 TSVD Solution Method...............................433
8.3.1.2 Tikhonov Solution Method...........................433
8.3.1.3 CGR Solution.......................................433
8.3.2 Optimization Techniques.....................................433
8.3.3 Metaheuristic Results.......................................434
8.3.3.1 Simulated Annealing................................434
8.3.4 Comparison of Selected Results..............................434
8.4 Application of Metaheuristic Methods................................436
8.5 Unresolved Problems.................................................436
8.6 Inverse Problems at the Nanoscale...................................436
8.7 Inverse Problems Involving Participating Media......................437
8.8 Concluding Remarks..................................................438
Homework..................................................................438
Chapter 9 Properties of Absorbing and Emitting Media..................................441
9.1 Introduction........................................................441
9.2 Spectral Lines and Bands for Gas Absorption and Emission............445
9.2.1 Physical Mechanisms.........................................445
9.2.2 Condition of Local Thermodynamic Equilibrium................447
9.2.3 Spectral Line Broadening....................................448
9.2.3.1 Natural Broadening.................................449
9.2.3.2 Doppler Broadening.................................450
9.2.3.3 Collision Broadening and Narrowing.................450
9.2.3.4 Stark Broadening...................................451
9.2.4 Absorption or Emission by a Single Spectral Line............452
9.2.4.1 Property Definitions for a Path in a Uniform
Absorbing and Emitting Medium......................452
9.2.4.2 Weak Lines.........................................453
9.2.4.3 Lorentz Lines......................................454
9.2.5 Band Absorption ............................................455
9.2.5.1 Band Structure.....................................455
9.2.5.2 Types of Band Models...............................457
9.2.5.3 Databases for the Line Absorption Properties
of Molecular Gases.................................458
9.3 Band Models and Correlations for Gas Absorption and Emission........459
9.3.1 Narrow-Band Models..........................................459
9.3.1.1 Elsasser Model.....................................459
9.3.1.2 Goody Model........................................461
9.3.1.3 Malkmus Model......................................461
9.3.1.4 Wide Band Models...................................461
xiv
Contents
9.3.2 Contemporary Band Correlations..............................461
9.3.2.1 ¿-Distribution Method.................................462
9.3.2.2 Correlated-^ Assumption............................. 463
9.3.2.3 Full Spectrum ¿-Distribution Methods..................467
9.3.3 Weighted Sum of Gray Gases...................................470
9.4 Gas Total Emittance Correlations.....................................476
9.5 True Absorption Coefficient..........................................482
9.6 Radiative Properties of Translucent Liquids and Solids..............482
Homework.............................................................*....488
Chapter 10 Fundamental Radiative Transfer Relations....................................491
10.1 Introduction........................................................491
10.2 Energy Equation and Boundary Conditions for a Participating Medium..492
10.3 Radiative Transfer and Source-Function Equations.....................493
10.3.1 Radiative Transfer Equation..................................494
10.3.2 Source-Function Equation.....................................496
10.4 Radiative Flux and Its Divergence within a Medium...................499
10.4.1 Radiative Flux Vector.......................................499
10.4.2 Divergence of Radiative Flux without Scattering
(Absorption Alone)............................................503
10.4.3 Divergence of Radiative Flux Including Scattering...........504
10.5 Summary of Relations for Radiative Transfer in Absorbing, Emitting,
and Scattering Media................................................506
10.5.1 Energy Equation..............................................506
10.5.2 Radiative Energy Source.................................... 506
10.5.3 Source Function..............................................507
10.5.4 Radiative Transfer Equation..................................507
10.5.5 Relations for a Gray Medium..................................507
10.6 Treatment of Radiation Transfer in Non-LTE Media....................508
10.7 Net-Radiation Method for Enclosures Filled with an Isothermal Medium
of Uniform Composition..............................................509
10.7.1 Definitions of Spectral Geometric-Mean Transmission
and Absorption Factors......................................512
10.7.2 Matrix of Enclosure: Theory Equations........................513
10.7.3 Energy Balance on a Medium...................................514
10.7.4 Spectral Band Equations for an Enclosure....................516
10.7.5 Gray Medium in a Gray Enclosure.............................517
10.8 Evaluation of Spectral Geometric-Mean Transmittance and
Absorptance Factors................................................519
10.9 Mean Beam Length Approximation for Spectral Radiation from
an Entire Volume of a Medium to All or Part of Its Boundary.......520
10.9.1 Mean Beam Length for a Medium between Parallel Plates
Radiating to Area on Plate..................................521
10.9.2 Mean Beam Length for the Sphere of a Medium Radiating
to Any Area on Its Boundary.................................521
10.9.3 Radiation from the Entire Medium Volume to Its Entire
Boundary for Optically Thin Media...........................522
10.9.4 Correction to Mean Beam Length When a Medium
Is Not Optically Thin.......................................523
Contents
xv
10.10 Exchange of Total Radiation in an Enclosure by the Use of Mean
Beam Length....................................................... 525
10.10.1 Total Radiation from the Entire Medium Volume
to All or Part of Its Boundary.............................525
10.10.2 Exchange between the Entire Medium Volume and the Emitting
Boundary....................................................526
10.11 Optically Thin and Cold Media......................................527
10.11.1 Nearly Transparent Medium...................................527
10.11.2 Optically Thin Media with Cold Boundaries or Small Incident
Radiation: The Emission Approximation.......................529
10.11.3 Cold Medium with Weak Scattering...........................531
Homework.................................................................532
Chapter 11 Radiative Transfer in Plane Layers and Multidimensional Geometries........539
11.1 Introduction...................................................... 539
11.2 Radiative Intensity, Flux, Flux Divergence, and Source Function
in a Plane Layer....................................................539
11.2.1 Radiative Transfer Equation and Radiative Intensity
for a Plane Layer...........................................539
11.2.2 Local Radiative Flux in a Plane Layer......................541
11.2.3 Divergence of the Radiative Flux: Radiative Energy Source..542
11.2.4 Equation for the Source Function in a Plane Layer..........543
11.2.5 Relations for Isotropic Scattering..........................544
11.2.6 Diffuse Boundary Fluxes for a Plane Layer with Isotropic
Scattering..................................................545
11.3 Gray Plane Layer of Absorbing and Emitting Medium with Isotropic
Scattering..........................................................547
11.4 Gray Plane Layer in Radiative Equilibrium...........................551
11.4.1 Energy Equation.............................................551
11.4.2 Absorbing Gray Medium in Radiative Equilibrium
with Isotropic Scattering................................. 551
11.4.3 Isotropically Scattering Medium with Zero Absorption........552
11.4.4 Gray Medium with dqjdx = 0 between Opaque Diffuse-Gray
Boundaries..................................................552
11.4.5 Solution for Gray Medium with dqjdx = 0 between Black
or Diffuse-Gray Boundaries at Specified Temperatures........553
11.4.5.1 Gray Medium between Black Boundaries...............554
11.4.5.2 Gray Medium between Diffuse-Gray Boundaries........555
11.4.5.3 Extended Solution for Optically Thin Medium
between Gray Boundaries.............................558
11.5 Multidimensional Radiation in a Participating Gray Medium
with Isotropic Scattering...........................................560
11.5.1 Radiation Transfer Relations in Three Dimensions............560
11.5.2 Two-Dimensional Transfer in an Infinitely Long Right
Rectangular Prism...........................................561
11.5.3 One-Dimensional Transfer in a Cylindrical Region............565
11.5.4 Additional Information on Nonplanar and Multidimensional
Geometries................................................ 569
Homework..................................................................570
XVI
Contents
Chapter 12 Solution Methods for Radiative Transfer in Participating Media...............573
12.1 Introduction........................................................573
12.2 Series Expansion and Moment Methods.................................573
12.2.1 Optically Thick Media, Radiative Diffusion...................575
12.2.1.1 Simplified Derivation of the Radiative Diffusion
Approximation.........................................576
12.2.1.2 General Radiation-Diffusion Relations in a Medium...578
12.2.2 Moment-Based Methods..........................................587
12.2.2.1 Milne-Eddington (Differential) Approximation.........588
12.2.2.2 General Spherical Harmonics (PN) Method.............591
12.2.2.3 Simplified PN (SPN) Method..........................600
12.2.2.4 MN Method............................................605
12.3 Discrete Ordinates (SN) Method.......................................607
12.3.1 Two-Flux Method: The Schuster-Schwarzschild Approximation....607
12.3.2 Radiative Transfer Equation with SN Method...................611
12.3.3 Boundary Conditions for the SN Method........................612
12.3.4 Control Volume Method for SN Numerical Solution............... 613
12.3.4.1 Relations for 2D Rectangular Coordinates.............614
12.3.4.2 Relations for 3D Rectangular Coordinates............616
12.3.5 Ordinate and Weighting Pairs..................................619
12.3.6 Results Using Discrete Ordinates..............................620
12.4 Other Methods That Depend on Angular Discretization..................621
12.4.1 Discrete Transfer Method......................................621
12.4.2 Finite Volume Method..........................................623
12.4.3 Boundary Element Method.......................................623
12.5 Zonal Method.........................................................624
12.5.1 Exchange Area Relations.......................................624
12.5.2 Zonal Formulation for Radiative Equilibrium..................626
12.5.3 Developments for the Zone Method..............................628
12.5.3.1 Smoothing of Exchange Area Sets.....................628
12.5.3.2 Other Formulations of the Zone Method...............629
12.5.3.3 Numerical Results from the Zone Method..............630
12.6 Monte Carlo Technique for Radiatively Participating Media...........632
12.6.1 Computational Method for Participating Media..................633
12.6.2 Monte Carlo Results for Radiation through Gray Gases..........637
12.6.2.1 Infinite Parallel Boundaries.........................637
12.6.2.2 Cylindrical Geometry.................................638
12.6.3 Consideration of Radiative Property Variations................638
12.6.4 Parallel Processing and Other Computational Improvements.....640
12.6.5 Reverse Monte Carlo in Participating Media....................641
12.6.6 Expanded Monte Carlo Treatments...............................642
12.7 Additional Solution Methods..........................................643
12.7.1 Reduction of the Integral Order...............................643
12.7.2 YIX Method....................................................643
12.7.3 Spectral Methods..............................................646
12.7.4 FEM for Radiative Equilibrium.................................646
12.7.5 Additional Information on Numerical Methods...................649
12.8 Comparison of Results for the Methods...............................650
12.9 Benchmark Solutions for Computational Verification...................651
12.10 Inverse Problems Involving Participating Media.....................653
Contents
XVII
12.11 Use of Mean Absorption Coefficients................................653
12. î 1.1 Definitions of Mean Absorption Coefficients..............653
12.11.2 Approximate Solutions of the Radiative Transfer Equations
Using Mean Absorption Coefficients..........................655
12.12 Solution Using Commercial Codes....................................656
Homework..................................................................656
Chapter 13 Conjugate Heat Transfer in Participating Media.............................665
13.1 Introduction........................................................665
13.2 Radiation Combined with Conduction..................................666
13.2.1 Energy Balance..............................................667
13.2.2 Plane Layer with Conduction and Radiation...................667
13.2.2.1 Absorbing-Emitting Medium without Scattering.......667
13.2.2.2 Absorbing-Emitting Medium with Scattering........670
13.2.3 Rectangular Region with Conduction and Radiation............673
13.2.4 PN Method for Radiation Combined with Conduction............674
13.2.5 Approximations for Combined Radiation and Conduction........678
13.2.5.1 Addition of Energy Transfer by Radiation and
Conduction.........................................678
13.2.5.2 Diffusion Method for Combined Radiation
and Conduction.....................................679
13.3 Transient Solutions Including Conduction............................685
13.4 Combined Radiation, Conduction, and Convection in a Boundary
Layer...............................................................688
13.4.1 Optically Thin Thermal Layer................................689
13.4.2 Optically Thick Thermal Layer...............................690
13.5 Numerical Solution Methods for Combined Radiation, Conduction,
and Convection in Participating Media...............................691
13.5.1 Finite-Difference Methods...................................693
13.5.1.1 Energy Equation for Combined Radiation
and Conduction.....................................693
13.5.1.2 Radiation and Conduction in a Plane Layer..........694
13.5.1.3 Radiation and Conduction in a 2D Rectangular
Region.............................................696
13.5.1.4 Boundary Conditions for Numerical Solutions........701
13.5.2 Finite-Element Method.......................................702
13.5.3 FEM for Radiation with Conduction and/or Convection.........703
13.5.3.1 Results from Finite-Element Analyses...............704
13.5.4 Monte Carlo in Combined-Mode Problems.......................706
13.6 Combined Radiation, Convection, and Conduction Heat Transfer........706
13.6.1 Forced Convection Channel Flows.............................707
13.6.2 Free-Convection Flow, Heat Transfer, and Stability..........712
13.6.3 Radiative Transfer in Porous Media and Packed Beds..........715
13.6.4 Radiation Interactions with Turbulence......................716
13.6.5 Additional Topics with Combined Radiation, Conduction,
and Convection..............................................716
13.7 Inverse Multimode Problems..........................................716
13.8 Verification, Validation, and Uncertainty Quantification............717
Homework..................................................................717
xviii
Contents
Chapter 14 Electromagnetic Wave Theory.................................................../z/
14.1 Introduction................................................*........^21
14.2 EM Wave Equations.....................................................728
14.3 Wave Propagation in a Medium..........................................730
14.3.1 EM Wave Propagation in Perfect Dielectric Media..............730
14.3.2 Wave Propagation in Isotropic Media with Finite Electrical
Conductivity...................................................733
14.3.3 Energy of an EM Wave.........................................734
14.4 Laws of Reflection and Refraction....................................735
14.4.1 Reflection and Refraction at the Interface between Perfect
Dielectrics (k 0)..............................................736
14.4.2 Reflection and Refraction at the Interface of an Absorbing
Medium (k # 0).................................................741
14.5 Amplitude and Scattering Matrices.....................................744
14.6 EM Wave Theory and the Radiative Transfer Equation....................747
Homework....................................................................748
Chapter 15 Absorption and Scattering by Particles and Agglomerates........................749
15.1 Overview...............................................................749
15.2 Absorption and Scattering: Definitions................................751
15.2.1 Background.....................................................751
15.2.2 Absorption and Scattering Coefficients, Cross Sections,
Efficiencies....................................................751
15.2.3 Scattering Phase Function.....................................753
15.3 Scattering by Spherical Particles......................................757
15.3.1 Scattering by a Specularly Reflecting Sphere...................757
15.3.2 Reflection from a Large Diffuse Sphere........................760
15.3.3 Large Ideal Dielectric Sphere with n ~ 1......................761
15.3.4 Diffraction from a Large Sphere................................762
15.3.5 Geometric Optics Approximation.................................764
15.4 Scattering by Small Particles.......................................... 766
15.4.1 Rayleigh Scattering by Small Spheres...........................766
15.4.2 Scattering Cross Section for Rayleigh Scattering...............767
15.4.3 Phase Function for Rayleigh Scattering.........................769
15.5 Lorenz-Mie Theory for Spherical Particles.............................770
15.5.1 Formulation for Homogeneous and Stratified Spherical
Particles....................................................772
15.5.2 Cross Sections for Specific Cases..............................775
15.6 Prediction of Properties for Irregularly Shaped Particles.............776
15.6.1 Integral and Differential Formulations....................... 777
15.6.2 T-Matrix Approach..............................................777
15.6.3 Discrete Dipole Approximation..................................778
15.6.4 Finite-Element Method..........................................781
15.6.5 Finite Difference Time-Domain Method...........................782
15.7 Approximate Anisotropic Scattering Phase Functions....................785
15.7.1 Forward Scattering Phase Function..............................785
15.7. L1 Linear-Anisotropic Phase Function.................... 786
15.7.1.2 Delta-Eddington Phase Function..................... 786
15.7.1.3 Henyey-Greenstein Phase Function.....................786
Contents xix
15.8 Dependent Absorption and Scattering..................................788
Homework...................................................................792
Chapter 16 Near-Field Thermal Radiation................................................795
16.1 Introduction.........................................................795
16.2 Electromagnetic Treatment of Thermal Radiation and Basic Concepts....800
16.2.1 Near-Field Thermal Radiation versus Far-Field Thermal
Radiation....................................................800
16.2.2 Electromagnetic Description of Near-Field Thermal Radiation..800
16.2.3 Near-Field Radiative Heat Flux...............................804
16.2.4 Density of Electromagnetic States............................805
16.2.5 Spatial and Temporal Coherence of Thermal Radiation..........806
16.3 Evanescent and Surface Waves.........................................806
16.3.1 Evanescent Waves and Total Internal Reflection...............806
16.3.2 Surface Waves................................................808
16.4 Near-Field Radiative Heat Flux Calculations..........................811
16.4.1 Near-Field Radiative Heat Flux in 1D Layered Media...........812
16.4.2 Near-Field Radiative Heat Transfer between Two Bulk
Materials Separated by a Vacuum Gap..........................815
16.5 Computational Studies of Near-Field Thermal Radiation................819
16.6 Experimental Studies of Near-Field Thermal Radiation.................820
16.6.1 Overview.....................................................820
16.6.2 Experimental Determination of NFRT Coefficient...............822
16.6.3 Near-Field Effects on Radiative Properties and Metamaterials.823
16.7 Concluding Remarks...................................................826
Homework...................................................................827
Chapter 17 Radiative Effects in Translucent Solids, Windows, and Coatings...............829
17.1 Introduction.........................................................829
17.2 Transmission, Absorption, and Reflection of Windows..................830
17.2.1 Single Partially Transmitting Layer with Thickness D X
(No Wave Interference Effects)...............................831
17.2.1.1 Ray-Tracing Method..................................831
17.2.1.2 Net-Radiation Method................................832
17.2.2 Multiple Parallel Windows....................................834
17.2.3 Transmission through Multiple Parallel Glass Plates..........836
17.2.4 Interaction of Transmitting Plates with Absorbing Plate......837
17.3 Enclosure Analysis with Partially Transparent Windows................840
17.4 Effects of Coatings or Thin Films on Surfaces........................842
17.4.1 Coating without Wave Interference Effects....................842
17.4.1.1 Nonabsorbing Dielectric Coating on Nonabsorbing
Dielectric Substrate.................................842
17.4.1.2 Absorbing Coating on Metal Substrate................843
17.4.2 Thin Film with Wave Interference Effects.....................844
17.4.2.1 Nonabsorbing Dielectric Thin Film on Nonabsorbing
Dielectric Substrate.................................844
17.4.2.2 Absorbing Thin Film on a Metal Substrate............848
17.4.3 Films with Partial Coherence.................................849
XX
Contents
17.5 Refractive Index Effects on Radiation in a Participating Medium......849
17.5.1 Effect of Refractive Index on Intensity Crossing an Interface.849
17.5.2 Effect of Angle for Total Reflection..........................850
17.5.3 Effects of Boundary Conditions for Radiation Analysis
in a Plane Layer..............................................852
17.5.3.1 Layer with Nondiffuse or Specular Surfaces...........852
17.5.3.2 Diffuse Surfaces....................................855
17.5.4 Emission from a Translucent Layer (n 1) at Uniform
Temperature with Specular or Diffuse Boundaries...............857
17.6 Multiple Participating Layers with Heat Conduction...................859
17.6.1 Formulation for Multiple Participating Plane Layers...........860
17.6.2 Translucent Layer on a Metal Wall.............................861
17.6.3 Composite of Two Translucent Layers...........................864
17.6.3.1 Temperature Distribution Relations from Energy
Equation.......................................... 864
17.6.3.2 Relations for Radiative Flux.........................866
17.6.3.3 Equation for the Source Function.....................868
17.6.3.4 Solution Procedure and Typical Results..............868
17.7 Light Pipes and Fiber Optics.........................................871
17.8 Final Remarks........................................................873
Homework...................................................................873
Appendix A: Conversion Factors, Radiation Constants, and Blackbody Functions...........881
Appendix B: Radiative Properties.......................................................889
Appendix C: Catalog of Selected Configuration Factors..................................897
Appendix D: Exponential Integral Relations and Two-Dimensional Radiation Functions.....903
Appendix E: References............................................................... 909
Index..................................................................................971
|
any_adam_object | 1 |
author | Howell, John R. 1936- Mengüç, M. Pinar Siegel, Robert |
author_GND | (DE-588)115258264 |
author_facet | Howell, John R. 1936- Mengüç, M. Pinar Siegel, Robert |
author_role | aut aut aut |
author_sort | Howell, John R. 1936- |
author_variant | j r h jr jrh m p m mp mpm r s rs |
building | Verbundindex |
bvnumber | BV042772543 |
classification_rvk | UG 2800 |
classification_tum | PHY 052f MTA 790f |
ctrlnum | (OCoLC)932261807 (DE-599)BVBBV042772543 |
dewey-full | 536.33 621.402/2 |
dewey-hundreds | 500 - Natural sciences and mathematics 600 - Technology (Applied sciences) |
dewey-ones | 536 - Heat 621 - Applied physics |
dewey-raw | 536.33 621.402/2 |
dewey-search | 536.33 621.402/2 |
dewey-sort | 3536.33 |
dewey-tens | 530 - Physics 620 - Engineering and allied operations |
discipline | Physik Energietechnik |
edition | Sixth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01980nam a22004812c 4500</leader><controlfield tag="001">BV042772543</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160909 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150821s2016 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466593268</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-4665-9326-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)932261807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042772543</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.33</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.402/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2800</subfield><subfield code="0">(DE-625)145621:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 052f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 790f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Howell, John R.</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115258264</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal radiation heat transfer</subfield><subfield code="c">John R. Howell, M. Pinar Mengüç, Robert Siegel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Sixth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxiv, 982 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmestrahlung</subfield><subfield code="0">(DE-588)4188872-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieabsorber</subfield><subfield code="0">(DE-588)4152211-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wärmestrahlung</subfield><subfield code="0">(DE-588)4188872-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Energieabsorber</subfield><subfield code="0">(DE-588)4152211-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mengüç, M. Pinar</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siegel, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028202809&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028202809</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042772543 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:09:17Z |
institution | BVB |
isbn | 9781466593268 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028202809 |
oclc_num | 932261807 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | xxxiv, 982 Seiten Illustrationen, Diagramme |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | CRC Press |
record_format | marc |
spelling | Howell, John R. 1936- Verfasser (DE-588)115258264 aut Thermal radiation heat transfer John R. Howell, M. Pinar Mengüç, Robert Siegel Sixth edition Boca Raton ; London ; New York CRC Press [2016] xxxiv, 982 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Wärmestrahlung (DE-588)4188872-8 gnd rswk-swf Wärmeübertragung (DE-588)4064211-2 gnd rswk-swf Energieabsorber (DE-588)4152211-4 gnd rswk-swf Wärmestrahlung (DE-588)4188872-8 s Wärmeübertragung (DE-588)4064211-2 s 1\p DE-604 Energieabsorber (DE-588)4152211-4 s 2\p DE-604 Mengüç, M. Pinar Verfasser aut Siegel, Robert Verfasser aut Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028202809&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Howell, John R. 1936- Mengüç, M. Pinar Siegel, Robert Thermal radiation heat transfer Wärmestrahlung (DE-588)4188872-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Energieabsorber (DE-588)4152211-4 gnd |
subject_GND | (DE-588)4188872-8 (DE-588)4064211-2 (DE-588)4152211-4 |
title | Thermal radiation heat transfer |
title_auth | Thermal radiation heat transfer |
title_exact_search | Thermal radiation heat transfer |
title_full | Thermal radiation heat transfer John R. Howell, M. Pinar Mengüç, Robert Siegel |
title_fullStr | Thermal radiation heat transfer John R. Howell, M. Pinar Mengüç, Robert Siegel |
title_full_unstemmed | Thermal radiation heat transfer John R. Howell, M. Pinar Mengüç, Robert Siegel |
title_short | Thermal radiation heat transfer |
title_sort | thermal radiation heat transfer |
topic | Wärmestrahlung (DE-588)4188872-8 gnd Wärmeübertragung (DE-588)4064211-2 gnd Energieabsorber (DE-588)4152211-4 gnd |
topic_facet | Wärmestrahlung Wärmeübertragung Energieabsorber |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028202809&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT howelljohnr thermalradiationheattransfer AT mengucmpinar thermalradiationheattransfer AT siegelrobert thermalradiationheattransfer |