Mathematics of aperiodic order:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Springer
2015
|
Schriftenreihe: | Progress in Mathematics
309 |
Schlagworte: | |
Online-Zugang: | BTU01 FRO01 TUM01 UBM01 UBT01 UBW01 UPA01 Volltext Inhaltsverzeichnis Abstract |
Beschreibung: | 1 Online-Ressource (XII, 428 S.) 59 illus., 17 illus. in color |
ISBN: | 9783034809030 |
ISSN: | 0743-1643 |
DOI: | 10.1007/978-3-0348-0903-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042669308 | ||
003 | DE-604 | ||
005 | 20200929 | ||
007 | cr|uuu---uuuuu | ||
008 | 150703s2015 |||| o||u| ||||||eng d | ||
020 | |a 9783034809030 |c Online |9 978-3-0348-0903-0 | ||
024 | 7 | |a 10.1007/978-3-0348-0903-0 |2 doi | |
035 | |a (OCoLC)912969301 | ||
035 | |a (DE-599)BVBBV042669308 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-703 |a DE-20 |a DE-739 |a DE-634 |a DE-861 |a DE-83 | ||
082 | 0 | |a 516.1 |2 23 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Mathematics of aperiodic order |c Johannes Kellendonk ..., ed. |
264 | 1 | |a Basel [u.a.] |b Springer |c 2015 | |
300 | |a 1 Online-Ressource (XII, 428 S.) |b 59 illus., 17 illus. in color | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 309 |x 0743-1643 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Discrete groups | |
650 | 4 | |a Number theory | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Kellendonk, Johannes |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-0348-0902-3 |
830 | 0 | |a Progress in Mathematics |v 309 |w (DE-604)BV035421267 |9 309 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-0903-0 |x Verlag |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-028101392 | ||
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-0348-0903-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804174858544742400 |
---|---|
adam_text | MATHEMATICS OF APERIODIC ORDER
/
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE
1.M. BAAKE, M. BIRKNER AND U. GRIMM: NON-PERIODIC SYSTEMS WITH
CONTINUOUS DIFFRACTION MEASURES
2.S. AKIYAMA, M. BARGE, V. BERTHE, J.-Y. LEE AND A. SIEGEL: ON THE
PISOT SUBSTITUTION CONJECTURE
3. L. SADUN: COHOMOLOGY OF HIERARCHICAL TILINGS
4.J. HUNTON: SPACES OF PROJECTION METHOD PATTERNS AND THEIR COHOMOLOGY
5.J.-B. AUJOGUE, M. BARGE, J. KELLENDONK, D. LENZ: EQUICONTINUOUS
FACTORS, PROXIMALITY AND ELLIS SEMIGROUP FOR DELONE SETS
6.J. ALISTE-PRIETO, D. CORONEL, M.I. CORTEZ, F. DURAND AND S. PETITE:
LINEARLY REPETITIVE DELONE SETS
7.N. PRIEBE FRANK: TILINGS WITH INFINITE LOCAL COMPLEXITY
8. A.JULIEN, J. KELLENDONK AND J. SAVINIEN: ON THE NONCOMMUTATIVE
GEOMETRY OF TILINGS
9.D. DAMANIK, M. EMBREE AND A. GORODETSKI: SPECTRAL PROPERTIES OF
SCHROEDINGER OPERATORS ARISING IN THE STUDY OF QUASICRYSTALS
10.S. PUZYNINA AND L.Q. ZAMBONI: ADDITIVE PROPERTIES OF SETS AND
SUBSTITUTIVE DYNAMICS
11.J.V. BELLISSARD: DELONE SETS AND MATERIAL SCIENCE: A PROGRAM
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
MATHEMATICS OF APERIODIC ORDER
/
: 2015
ABSTRACT / INHALTSTEXT
WHAT IS ORDER THAT IS NOT BASED ON SIMPLE REPETITION, THAT IS,
PERIODICITY? HOW MUST ATOMS BE ARRANGED IN A MATERIAL SO THAT IT
DIFFRACTS LIKE A QUASICRYSTAL? HOW CAN WE DESCRIBE APERIODICALLY ORDERED
SYSTEMS MATHEMATICALLY? ORIGINALLY TRIGGERED BY THE – LATER NOBEL
PRIZE-WINNING – DISCOVERY OF QUASICRYSTALS, THE INVESTIGATION OF
APERIODIC ORDER HAS SINCE BECOME A WELL-ESTABLISHED AND RAPIDLY EVOLVING
FIELD OF MATHEMATICAL RESEARCH WITH CLOSE TIES TO A SURPRISING VARIETY
OF BRANCHES OF MATHEMATICS AND PHYSICS. THIS BOOK OFFERS AN OVERVIEW OF
THE STATE OF THE ART IN THE FIELD OF APERIODIC ORDER, PRESENTED IN
CAREFULLY SELECTED AUTHORITATIVE SURVEYS. IT IS INTENDED FOR NON-EXPERTS
WITH A GENERAL BACKGROUND IN MATHEMATICS, THEORETICAL PHYSICS OR
COMPUTER SCIENCE, AND OFFERS A HIGHLY ACCESSIBLE SOURCE OF FIRST-HAND
INFORMATION FOR ALL THOSE INTERESTED IN THIS RICH AND EXCITING FIELD.
TOPICS COVERED INCLUDE THE MATHEMATICAL THEORY OF DIFFRACTION, THE
DYNAMICAL SYSTEMS OF TILINGS OR DELONE SETS, THEIR COHOMOLOGY AND
NON-COMMUTATIVE GEOMETRY, THE PISOT SUBSTITUTION CONJECTURE, APERIODIC
SCHROEDINGER OPERATORS, AND CONNECTIONS TO ARITHMETIC NUMBER THEORY
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV042669308 |
classification_rvk | SK 380 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)912969301 (DE-599)BVBBV042669308 |
dewey-full | 516.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.1 |
dewey-search | 516.1 |
dewey-sort | 3516.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-0903-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02946nmm a2200637zcb4500</leader><controlfield tag="001">BV042669308</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150703s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034809030</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-0903-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-0903-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)912969301</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042669308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics of aperiodic order</subfield><subfield code="c">Johannes Kellendonk ..., ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 428 S.)</subfield><subfield code="b">59 illus., 17 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">309</subfield><subfield code="x">0743-1643</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kellendonk, Johannes</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-0348-0902-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">309</subfield><subfield code="w">(DE-604)BV035421267</subfield><subfield code="9">309</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028101392</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-0348-0903-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042669308 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:07:04Z |
institution | BVB |
isbn | 9783034809030 |
issn | 0743-1643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028101392 |
oclc_num | 912969301 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-739 DE-634 DE-861 DE-83 |
physical | 1 Online-Ressource (XII, 428 S.) 59 illus., 17 illus. in color |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Springer |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in mathematics |
spelling | Mathematics of aperiodic order Johannes Kellendonk ..., ed. Basel [u.a.] Springer 2015 1 Online-Ressource (XII, 428 S.) 59 illus., 17 illus. in color txt rdacontent c rdamedia cr rdacarrier Progress in mathematics 309 0743-1643 Mathematics Differentiable dynamical systems Global analysis Operator theory Discrete groups Number theory Convex and Discrete Geometry Dynamical Systems and Ergodic Theory Operator Theory Number Theory Global Analysis and Analysis on Manifolds Mathematik Kellendonk, Johannes Sonstige oth Erscheint auch als Druckausgabe 978-3-0348-0902-3 Progress in Mathematics 309 (DE-604)BV035421267 309 https://doi.org/10.1007/978-3-0348-0903-0 Verlag Volltext Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Springer Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Abstract |
spellingShingle | Mathematics of aperiodic order Progress in Mathematics Mathematics Differentiable dynamical systems Global analysis Operator theory Discrete groups Number theory Convex and Discrete Geometry Dynamical Systems and Ergodic Theory Operator Theory Number Theory Global Analysis and Analysis on Manifolds Mathematik |
title | Mathematics of aperiodic order |
title_auth | Mathematics of aperiodic order |
title_exact_search | Mathematics of aperiodic order |
title_full | Mathematics of aperiodic order Johannes Kellendonk ..., ed. |
title_fullStr | Mathematics of aperiodic order Johannes Kellendonk ..., ed. |
title_full_unstemmed | Mathematics of aperiodic order Johannes Kellendonk ..., ed. |
title_short | Mathematics of aperiodic order |
title_sort | mathematics of aperiodic order |
topic | Mathematics Differentiable dynamical systems Global analysis Operator theory Discrete groups Number theory Convex and Discrete Geometry Dynamical Systems and Ergodic Theory Operator Theory Number Theory Global Analysis and Analysis on Manifolds Mathematik |
topic_facet | Mathematics Differentiable dynamical systems Global analysis Operator theory Discrete groups Number theory Convex and Discrete Geometry Dynamical Systems and Ergodic Theory Operator Theory Number Theory Global Analysis and Analysis on Manifolds Mathematik |
url | https://doi.org/10.1007/978-3-0348-0903-0 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028101392&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV035421267 |
work_keys_str_mv | AT kellendonkjohannes mathematicsofaperiodicorder |