Topics on Real and Complex Singularities: An Introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1987
|
Schriftenreihe: | Advanced Lectures in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The body of mathematics developed in the last forty years or so which can be put under the heading Singularity Theory is quite large. And the excellent introductions to this vast sub ject which are already available (for instance [AGVJ, [BGJ, [GiJ, [GGJ, [LmJ, [Mr], [WsJ or the more advanced [Ln]) cover necessarily only apart of even the most basic topics. The aim of the present book is to introduce the reader to a few important topics from ZoaaZ Singularity Theory. Some of these topics have already been treated in other introductory books (e.g. right and contact finite determinacy of function germs) while others have been considered only in papers (e.g. Mather's Lemma, classification of simple O-dimensional complete intersection singularities, singularities of hyperplane sections and of dual mappings of projective hypersurfaces). Even in the first case, we feel that our treatment is different from the introductions mentioned above - the general reason being that we give special attention to the aompZex anaZytia situation and to the connections with AZgebraia Geometry. We offer now a detailed description of the contents, pOint ing out special aspects and new material (i.e. previously un published, though for the most part surely known to the~ts!). Chapter 1 is a short introduction for the beginner. We recall here two basic results (the Submersion Theorem and Morse Lemma) and make a few comments on what is meant by the local behaviour of a function or of a plane algebraic curve |
Beschreibung: | 1 Online-Ressource (XVII, 242 S.) |
ISBN: | 9783663139034 9783528089993 |
ISSN: | 0932-7134 |
DOI: | 10.1007/978-3-663-13903-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042452237 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1987 |||| o||u| ||||||ger d | ||
020 | |a 9783663139034 |c Online |9 978-3-663-13903-4 | ||
020 | |a 9783528089993 |c Print |9 978-3-528-08999-3 | ||
024 | 7 | |a 10.1007/978-3-663-13903-4 |2 doi | |
035 | |a (OCoLC)906799177 | ||
035 | |a (DE-599)BVBBV042452237 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Dimca, Alexandru |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topics on Real and Complex Singularities |b An Introduction |c von Alexandru Dimca |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1987 | |
300 | |a 1 Online-Ressource (XVII, 242 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Lectures in Mathematics |x 0932-7134 | |
500 | |a The body of mathematics developed in the last forty years or so which can be put under the heading Singularity Theory is quite large. And the excellent introductions to this vast sub ject which are already available (for instance [AGVJ, [BGJ, [GiJ, [GGJ, [LmJ, [Mr], [WsJ or the more advanced [Ln]) cover necessarily only apart of even the most basic topics. The aim of the present book is to introduce the reader to a few important topics from ZoaaZ Singularity Theory. Some of these topics have already been treated in other introductory books (e.g. right and contact finite determinacy of function germs) while others have been considered only in papers (e.g. Mather's Lemma, classification of simple O-dimensional complete intersection singularities, singularities of hyperplane sections and of dual mappings of projective hypersurfaces). Even in the first case, we feel that our treatment is different from the introductions mentioned above - the general reason being that we give special attention to the aompZex anaZytia situation and to the connections with AZgebraia Geometry. We offer now a detailed description of the contents, pOint ing out special aspects and new material (i.e. previously un published, though for the most part surely known to the~ts!). Chapter 1 is a short introduction for the beginner. We recall here two basic results (the Submersion Theorem and Morse Lemma) and make a few comments on what is meant by the local behaviour of a function or of a plane algebraic curve | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Complex Systems | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 1 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-663-13903-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027887483 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153155942875136 |
---|---|
any_adam_object | |
author | Dimca, Alexandru |
author_facet | Dimca, Alexandru |
author_role | aut |
author_sort | Dimca, Alexandru |
author_variant | a d ad |
building | Verbundindex |
bvnumber | BV042452237 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)906799177 (DE-599)BVBBV042452237 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-663-13903-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03296nmm a2200505zc 4500</leader><controlfield tag="001">BV042452237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1987 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663139034</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-13903-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783528089993</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-528-08999-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-13903-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)906799177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042452237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dimca, Alexandru</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics on Real and Complex Singularities</subfield><subfield code="b">An Introduction</subfield><subfield code="c">von Alexandru Dimca</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 242 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Lectures in Mathematics</subfield><subfield code="x">0932-7134</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The body of mathematics developed in the last forty years or so which can be put under the heading Singularity Theory is quite large. And the excellent introductions to this vast sub ject which are already available (for instance [AGVJ, [BGJ, [GiJ, [GGJ, [LmJ, [Mr], [WsJ or the more advanced [Ln]) cover necessarily only apart of even the most basic topics. The aim of the present book is to introduce the reader to a few important topics from ZoaaZ Singularity Theory. Some of these topics have already been treated in other introductory books (e.g. right and contact finite determinacy of function germs) while others have been considered only in papers (e.g. Mather's Lemma, classification of simple O-dimensional complete intersection singularities, singularities of hyperplane sections and of dual mappings of projective hypersurfaces). Even in the first case, we feel that our treatment is different from the introductions mentioned above - the general reason being that we give special attention to the aompZex anaZytia situation and to the connections with AZgebraia Geometry. We offer now a detailed description of the contents, pOint ing out special aspects and new material (i.e. previously un published, though for the most part surely known to the~ts!). Chapter 1 is a short introduction for the beginner. We recall here two basic results (the Submersion Theorem and Morse Lemma) and make a few comments on what is meant by the local behaviour of a function or of a plane algebraic curve</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-13903-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027887483</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042452237 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:22:07Z |
institution | BVB |
isbn | 9783663139034 9783528089993 |
issn | 0932-7134 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027887483 |
oclc_num | 906799177 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (XVII, 242 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Advanced Lectures in Mathematics |
spelling | Dimca, Alexandru Verfasser aut Topics on Real and Complex Singularities An Introduction von Alexandru Dimca Wiesbaden Vieweg+Teubner Verlag 1987 1 Online-Ressource (XVII, 242 S.) txt rdacontent c rdamedia cr rdacarrier Advanced Lectures in Mathematics 0932-7134 The body of mathematics developed in the last forty years or so which can be put under the heading Singularity Theory is quite large. And the excellent introductions to this vast sub ject which are already available (for instance [AGVJ, [BGJ, [GiJ, [GGJ, [LmJ, [Mr], [WsJ or the more advanced [Ln]) cover necessarily only apart of even the most basic topics. The aim of the present book is to introduce the reader to a few important topics from ZoaaZ Singularity Theory. Some of these topics have already been treated in other introductory books (e.g. right and contact finite determinacy of function germs) while others have been considered only in papers (e.g. Mather's Lemma, classification of simple O-dimensional complete intersection singularities, singularities of hyperplane sections and of dual mappings of projective hypersurfaces). Even in the first case, we feel that our treatment is different from the introductions mentioned above - the general reason being that we give special attention to the aompZex anaZytia situation and to the connections with AZgebraia Geometry. We offer now a detailed description of the contents, pOint ing out special aspects and new material (i.e. previously un published, though for the most part surely known to the~ts!). Chapter 1 is a short introduction for the beginner. We recall here two basic results (the Submersion Theorem and Morse Lemma) and make a few comments on what is meant by the local behaviour of a function or of a plane algebraic curve Mathematics Functions of complex variables Functions of a Complex Variable Complex Systems Mathematics, general Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Singularität Mathematik (DE-588)4077459-4 s Algebraische Geometrie (DE-588)4001161-6 s 1\p DE-604 https://doi.org/10.1007/978-3-663-13903-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dimca, Alexandru Topics on Real and Complex Singularities An Introduction Mathematics Functions of complex variables Functions of a Complex Variable Complex Systems Mathematics, general Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd Singularität Mathematik (DE-588)4077459-4 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4077459-4 |
title | Topics on Real and Complex Singularities An Introduction |
title_auth | Topics on Real and Complex Singularities An Introduction |
title_exact_search | Topics on Real and Complex Singularities An Introduction |
title_full | Topics on Real and Complex Singularities An Introduction von Alexandru Dimca |
title_fullStr | Topics on Real and Complex Singularities An Introduction von Alexandru Dimca |
title_full_unstemmed | Topics on Real and Complex Singularities An Introduction von Alexandru Dimca |
title_short | Topics on Real and Complex Singularities |
title_sort | topics on real and complex singularities an introduction |
title_sub | An Introduction |
topic | Mathematics Functions of complex variables Functions of a Complex Variable Complex Systems Mathematics, general Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd Singularität Mathematik (DE-588)4077459-4 gnd |
topic_facet | Mathematics Functions of complex variables Functions of a Complex Variable Complex Systems Mathematics, general Mathematik Algebraische Geometrie Singularität Mathematik |
url | https://doi.org/10.1007/978-3-663-13903-4 |
work_keys_str_mv | AT dimcaalexandru topicsonrealandcomplexsingularitiesanintroduction |