Lineare Algebra und Analytische Geometrie II: Noten zu einer Vorlesung mit historischen Anmerkungen von Erhard Scholz
Saved in:
Bibliographic Details
Main Author: Brieskorn, Egbert 1936-2013 (Author)
Format: Electronic eBook
Language:German
Published: Wiesbaden Vieweg+Teubner Verlag 1985
Subjects:
Online Access:Volltext
Item Description:Die Jordanzerlegung in halbeinfachen und nilpotenten Anteil lieferte uns die charakteristische Abbildung n M{n x n,K) ~ K , x die jeder Matrix A die Koeffizienten (a , ... ,a ) des charakteristischen 1 n Polynoms von A zuordnet. Mit Hilfe dieser Abbildung hatten wir das Klassi­ fikationsproblem in zwei Teilprobleme A und B aufgespalten. Problem A Hier bestand das Problem in der Klassifikation der halbeinfachen Matrizen bis auf Konjugation. Das Hauptresultat war der Satz 11.45*. Die Konjugations­ klassen halbeinfacher Matrizen entsprechen bijektiv den Punkten des affinen Raumes ~. Eine Einteilung der halbeinfachen Konjugationsklassen in Typen ergibt sich in naturlicher Weise durch die algebraischen Multiplizitaten der Eigenwerte Ai . Dabei entsprechen die regularen Elemente, d.h. die­ n jenigen mit m = 1 , gerade den Punkten von K 1m Komplement der Disk- i n minantenmenge D cK , und den verschiedenen Typen von singul4ren Elementen entsprechen, wie wir an Beispielen gesehen haben, verschiedene Strata (d.h. Schichten) von D, welche man analytisch-geometrisch charakterisieren kann. 1m Fall K = Roder K = ~ sehen wir also, daß die Konjugationsklassen der halbeinfachen Anteile eine kontinuierliche Mannigfaltigkeit bilden, namlich einen affinen Raum Kn, und daB die weitere Typeneinteilung dieser Konju­ gationsklassen mit der analytischen Geometrie der Diskriminantenmengen n D c. K zusammenhangt
Physical Description:1 Online-Ressource (XIV, 534 S.)
ISBN:9783322831767
9783322831774
DOI:10.1007/978-3-322-83176-7

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text