Sturm-Liouville Operators and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Basel
Birkhäuser Basel
1986
|
Schriftenreihe: | Operator Theory: Advances and Applications
22 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y" + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40's a new investigation tool joined the arsenal - that of transformation operators |
Beschreibung: | 1 Online-Ressource (XI, 367 S.) |
ISBN: | 9783034854856 9783034854863 |
ISSN: | 0255-0156 |
DOI: | 10.1007/978-3-0348-5485-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042443406 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150324s1986 |||| o||u| ||||||ger d | ||
020 | |a 9783034854856 |c Online |9 978-3-0348-5485-6 | ||
020 | |a 9783034854863 |c Print |9 978-3-0348-5486-3 | ||
024 | 7 | |a 10.1007/978-3-0348-5485-6 |2 doi | |
035 | |a (OCoLC)858032104 | ||
035 | |a (DE-599)BVBBV042443406 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a ger | |
049 | |a DE-91 |a DE-634 |a DE-92 |a DE-706 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a NAT 000 |2 stub | ||
100 | 1 | |a Marchenko, Vladimir A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sturm-Liouville Operators and Applications |c von Vladimir A. Marchenko |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1986 | |
300 | |a 1 Online-Ressource (XI, 367 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 22 |x 0255-0156 | |
500 | |a The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y" + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40's a new investigation tool joined the arsenal - that of transformation operators | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Operator |0 (DE-588)4130529-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sturm-Liouville-Operator |0 (DE-588)4128474-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sturm-Liouville-Operator |0 (DE-588)4128474-4 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Operator |0 (DE-588)4130529-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-5485-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SNA |a ZDB-2-BAD | ||
940 | 1 | |q ZDB-2-SNA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027878653 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153137342185472 |
---|---|
any_adam_object | |
author | Marchenko, Vladimir A. |
author_facet | Marchenko, Vladimir A. |
author_role | aut |
author_sort | Marchenko, Vladimir A. |
author_variant | v a m va vam |
building | Verbundindex |
bvnumber | BV042443406 |
classification_tum | NAT 000 |
collection | ZDB-2-SNA ZDB-2-BAD |
ctrlnum | (OCoLC)858032104 (DE-599)BVBBV042443406 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft |
doi_str_mv | 10.1007/978-3-0348-5485-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03041nmm a2200517zcb4500</leader><controlfield tag="001">BV042443406</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1986 |||| o||u| ||||||ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854856</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-5485-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034854863</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-5486-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-5485-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858032104</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042443406</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marchenko, Vladimir A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sturm-Liouville Operators and Applications</subfield><subfield code="c">von Vladimir A. Marchenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 367 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">22</subfield><subfield code="x">0255-0156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y" + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40's a new investigation tool joined the arsenal - that of transformation operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sturm-Liouville-Operator</subfield><subfield code="0">(DE-588)4128474-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sturm-Liouville-Operator</subfield><subfield code="0">(DE-588)4128474-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Operator</subfield><subfield code="0">(DE-588)4130529-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-5485-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027878653</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042443406 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:49Z |
institution | BVB |
isbn | 9783034854856 9783034854863 |
issn | 0255-0156 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027878653 |
oclc_num | 858032104 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
owner_facet | DE-91 DE-BY-TUM DE-634 DE-92 DE-706 |
physical | 1 Online-Ressource (XI, 367 S.) |
psigel | ZDB-2-SNA ZDB-2-BAD ZDB-2-SNA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Marchenko, Vladimir A. Verfasser aut Sturm-Liouville Operators and Applications von Vladimir A. Marchenko Basel Birkhäuser Basel 1986 1 Online-Ressource (XI, 367 S.) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 22 0255-0156 The development of many important directions of mathematics and physics owes a major debt to the concepts and methods which evolved during the investigation of such simple objects as the Sturm-Liouville equation 2 2 y" + q(x)y = zy and the allied Sturm-Liouville operator L = - d /dx + q(x) (lately Land q(x) are often termed the one-dimensional Schrödinger operator and the potential). These provided a constant source of new ideas and problems in the spectral theory of operators and kindred areas of analysis. This sourse goes back to the first studies of D. Bernoulli and L. Euler on the solution of the equation describing the vibrations of astring, and still remains productive after more than two hundred years. This is confirmed by the recent discovery, made by C. Gardner, J. Green, M. Kruskal, and R. Miura [6J, of an unexpected connection between the spectral theory of Sturm-Liouville operators and certain nonlinear partial differential evolution equations. The methods used (and often invented) during the study of the Sturm-Liouville equation have been constantly enriched. In the 40's a new investigation tool joined the arsenal - that of transformation operators Science (General) Science, general Naturwissenschaft Operator (DE-588)4130529-2 gnd rswk-swf Anwendung (DE-588)4196864-5 gnd rswk-swf Sturm-Liouville-Operator (DE-588)4128474-4 gnd rswk-swf Sturm-Liouville-Operator (DE-588)4128474-4 s Anwendung (DE-588)4196864-5 s 1\p DE-604 Operator (DE-588)4130529-2 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-5485-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Marchenko, Vladimir A. Sturm-Liouville Operators and Applications Science (General) Science, general Naturwissenschaft Operator (DE-588)4130529-2 gnd Anwendung (DE-588)4196864-5 gnd Sturm-Liouville-Operator (DE-588)4128474-4 gnd |
subject_GND | (DE-588)4130529-2 (DE-588)4196864-5 (DE-588)4128474-4 |
title | Sturm-Liouville Operators and Applications |
title_auth | Sturm-Liouville Operators and Applications |
title_exact_search | Sturm-Liouville Operators and Applications |
title_full | Sturm-Liouville Operators and Applications von Vladimir A. Marchenko |
title_fullStr | Sturm-Liouville Operators and Applications von Vladimir A. Marchenko |
title_full_unstemmed | Sturm-Liouville Operators and Applications von Vladimir A. Marchenko |
title_short | Sturm-Liouville Operators and Applications |
title_sort | sturm liouville operators and applications |
topic | Science (General) Science, general Naturwissenschaft Operator (DE-588)4130529-2 gnd Anwendung (DE-588)4196864-5 gnd Sturm-Liouville-Operator (DE-588)4128474-4 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Operator Anwendung Sturm-Liouville-Operator |
url | https://doi.org/10.1007/978-3-0348-5485-6 |
work_keys_str_mv | AT marchenkovladimira sturmliouvilleoperatorsandapplications |