Functional Integration and Semiclassical Expansions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1982
|
Schriftenreihe: | Mathematics and Its Applications
10 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is intended as a fairly complete presentation of what··'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript |
Beschreibung: | 1 Online-Ressource (XII, 315 p) |
ISBN: | 9789401716345 9789048183777 |
DOI: | 10.1007/978-94-017-1634-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424260 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9789401716345 |c Online |9 978-94-017-1634-5 | ||
020 | |a 9789048183777 |c Print |9 978-90-481-8377-7 | ||
024 | 7 | |a 10.1007/978-94-017-1634-5 |2 doi | |
035 | |a (OCoLC)1184502550 | ||
035 | |a (DE-599)BVBBV042424260 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Langouche, F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Functional Integration and Semiclassical Expansions |c by F. Langouche, D. Roekaerts, E. Tirapegui |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1982 | |
300 | |a 1 Online-Ressource (XII, 315 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 10 | |
500 | |a This book is intended as a fairly complete presentation of what··'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quasiklassische Entwicklung |0 (DE-588)4318600-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalintegral |0 (DE-588)4155673-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalintegration |0 (DE-588)4155674-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionalintegration |0 (DE-588)4155674-4 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quasiklassische Entwicklung |0 (DE-588)4318600-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Funktionalintegral |0 (DE-588)4155673-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Roekaerts, D. |e Sonstige |4 oth | |
700 | 1 | |a Tirapegui, E. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-1634-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859677 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153101019512832 |
---|---|
any_adam_object | |
author | Langouche, F. |
author_facet | Langouche, F. |
author_role | aut |
author_sort | Langouche, F. |
author_variant | f l fl |
building | Verbundindex |
bvnumber | BV042424260 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184502550 (DE-599)BVBBV042424260 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-1634-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03890nmm a2200649zcb4500</leader><controlfield tag="001">BV042424260</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401716345</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1634-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048183777</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-8377-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1634-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184502550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424260</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Langouche, F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Functional Integration and Semiclassical Expansions</subfield><subfield code="c">by F. Langouche, D. Roekaerts, E. Tirapegui</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 315 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is intended as a fairly complete presentation of what··'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiklassische Entwicklung</subfield><subfield code="0">(DE-588)4318600-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalintegral</subfield><subfield code="0">(DE-588)4155673-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalintegration</subfield><subfield code="0">(DE-588)4155674-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionalintegration</subfield><subfield code="0">(DE-588)4155674-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quasiklassische Entwicklung</subfield><subfield code="0">(DE-588)4318600-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Funktionalintegral</subfield><subfield code="0">(DE-588)4155673-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roekaerts, D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tirapegui, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1634-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859677</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424260 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:15Z |
institution | BVB |
isbn | 9789401716345 9789048183777 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859677 |
oclc_num | 1184502550 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 315 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Langouche, F. Verfasser aut Functional Integration and Semiclassical Expansions by F. Langouche, D. Roekaerts, E. Tirapegui Dordrecht Springer Netherlands 1982 1 Online-Ressource (XII, 315 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 10 This book is intended as a fairly complete presentation of what··'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript Mathematics Global analysis (Mathematics) Analysis Mathematik Quasiklassische Entwicklung (DE-588)4318600-2 gnd rswk-swf Funktionalintegral (DE-588)4155673-2 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Funktionalintegration (DE-588)4155674-4 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Funktionalintegration (DE-588)4155674-4 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Quasiklassische Entwicklung (DE-588)4318600-2 s 2\p DE-604 Funktionalintegral (DE-588)4155673-2 s 3\p DE-604 Pfadintegral (DE-588)4173973-5 s 4\p DE-604 Roekaerts, D. Sonstige oth Tirapegui, E. Sonstige oth https://doi.org/10.1007/978-94-017-1634-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Langouche, F. Functional Integration and Semiclassical Expansions Mathematics Global analysis (Mathematics) Analysis Mathematik Quasiklassische Entwicklung (DE-588)4318600-2 gnd Funktionalintegral (DE-588)4155673-2 gnd Mathematische Physik (DE-588)4037952-8 gnd Funktionalintegration (DE-588)4155674-4 gnd Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4318600-2 (DE-588)4155673-2 (DE-588)4037952-8 (DE-588)4155674-4 (DE-588)4173973-5 |
title | Functional Integration and Semiclassical Expansions |
title_auth | Functional Integration and Semiclassical Expansions |
title_exact_search | Functional Integration and Semiclassical Expansions |
title_full | Functional Integration and Semiclassical Expansions by F. Langouche, D. Roekaerts, E. Tirapegui |
title_fullStr | Functional Integration and Semiclassical Expansions by F. Langouche, D. Roekaerts, E. Tirapegui |
title_full_unstemmed | Functional Integration and Semiclassical Expansions by F. Langouche, D. Roekaerts, E. Tirapegui |
title_short | Functional Integration and Semiclassical Expansions |
title_sort | functional integration and semiclassical expansions |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Quasiklassische Entwicklung (DE-588)4318600-2 gnd Funktionalintegral (DE-588)4155673-2 gnd Mathematische Physik (DE-588)4037952-8 gnd Funktionalintegration (DE-588)4155674-4 gnd Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Quasiklassische Entwicklung Funktionalintegral Mathematische Physik Funktionalintegration Pfadintegral |
url | https://doi.org/10.1007/978-94-017-1634-5 |
work_keys_str_mv | AT langouchef functionalintegrationandsemiclassicalexpansions AT roekaertsd functionalintegrationandsemiclassicalexpansions AT tirapeguie functionalintegrationandsemiclassicalexpansions |