Boolean Valued Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | Mathematics and Its Applications
494 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models |
Beschreibung: | 1 Online-Ressource (XII, 332 p) |
ISBN: | 9789401144438 9789401059084 |
DOI: | 10.1007/978-94-011-4443-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423942 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401144438 |c Online |9 978-94-011-4443-8 | ||
020 | |a 9789401059084 |c Print |9 978-94-010-5908-4 | ||
024 | 7 | |a 10.1007/978-94-011-4443-8 |2 doi | |
035 | |a (OCoLC)1184415166 | ||
035 | |a (DE-599)BVBBV042423942 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.75 |2 23 | |
082 | 0 | |a 515.625 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kusraev, A. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Boolean Valued Analysis |c by A. G. Kusraev, S. S. Kutateladze |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (XII, 332 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 494 | |
500 | |a Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nonstandard-Analysis |0 (DE-588)4137021-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Boolesche Algebra |0 (DE-588)4146280-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Boolesche Algebra |0 (DE-588)4146280-4 |D s |
689 | 0 | 1 | |a Nonstandard-Analysis |0 (DE-588)4137021-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kutateladze, S. S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4443-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859359 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153100295995392 |
---|---|
any_adam_object | |
author | Kusraev, A. G. |
author_facet | Kusraev, A. G. |
author_role | aut |
author_sort | Kusraev, A. G. |
author_variant | a g k ag agk |
building | Verbundindex |
bvnumber | BV042423942 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184415166 (DE-599)BVBBV042423942 |
dewey-full | 515.75 515.625 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.75 515.625 |
dewey-search | 515.75 515.625 |
dewey-sort | 3515.75 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-4443-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02916nmm a2200529zcb4500</leader><controlfield tag="001">BV042423942</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401144438</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4443-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401059084</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5908-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4443-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184415166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423942</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.75</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.625</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kusraev, A. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boolean Valued Analysis</subfield><subfield code="c">by A. G. Kusraev, S. S. Kutateladze</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 332 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">494</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nonstandard-Analysis</subfield><subfield code="0">(DE-588)4137021-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Boolesche Algebra</subfield><subfield code="0">(DE-588)4146280-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nonstandard-Analysis</subfield><subfield code="0">(DE-588)4137021-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kutateladze, S. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4443-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859359</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423942 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401144438 9789401059084 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859359 |
oclc_num | 1184415166 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 332 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Kusraev, A. G. Verfasser aut Boolean Valued Analysis by A. G. Kusraev, S. S. Kutateladze Dordrecht Springer Netherlands 1999 1 Online-Ressource (XII, 332 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 494 Boolean valued analysis is a technique for studying properties of an arbitrary mathematical object by comparing its representations in two different set-theoretic models whose construction utilises principally distinct Boolean algebras. The use of two models for studying a single object is a characteristic of the so-called non-standard methods of analysis. Application of Boolean valued models to problems of analysis rests ultimately on the procedures of ascending and descending, the two natural functors acting between a new Boolean valued universe and the von Neumann universe. This book demonstrates the main advantages of Boolean valued analysis which provides the tools for transforming, for example, function spaces to subsets of the reals, operators to functionals, and vector-functions to numerical mappings. Boolean valued representations of algebraic systems, Banach spaces, and involutive algebras are examined thoroughly. Audience: This volume is intended for classical analysts seeking powerful new tools, and for model theorists in search of challenging applications of nonstandard models Mathematics Functional equations Operator theory Difference and Functional Equations Operator Theory Mathematik Nonstandard-Analysis (DE-588)4137021-1 gnd rswk-swf Boolesche Algebra (DE-588)4146280-4 gnd rswk-swf Boolesche Algebra (DE-588)4146280-4 s Nonstandard-Analysis (DE-588)4137021-1 s 1\p DE-604 Kutateladze, S. S. Sonstige oth https://doi.org/10.1007/978-94-011-4443-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kusraev, A. G. Boolean Valued Analysis Mathematics Functional equations Operator theory Difference and Functional Equations Operator Theory Mathematik Nonstandard-Analysis (DE-588)4137021-1 gnd Boolesche Algebra (DE-588)4146280-4 gnd |
subject_GND | (DE-588)4137021-1 (DE-588)4146280-4 |
title | Boolean Valued Analysis |
title_auth | Boolean Valued Analysis |
title_exact_search | Boolean Valued Analysis |
title_full | Boolean Valued Analysis by A. G. Kusraev, S. S. Kutateladze |
title_fullStr | Boolean Valued Analysis by A. G. Kusraev, S. S. Kutateladze |
title_full_unstemmed | Boolean Valued Analysis by A. G. Kusraev, S. S. Kutateladze |
title_short | Boolean Valued Analysis |
title_sort | boolean valued analysis |
topic | Mathematics Functional equations Operator theory Difference and Functional Equations Operator Theory Mathematik Nonstandard-Analysis (DE-588)4137021-1 gnd Boolesche Algebra (DE-588)4146280-4 gnd |
topic_facet | Mathematics Functional equations Operator theory Difference and Functional Equations Operator Theory Mathematik Nonstandard-Analysis Boolesche Algebra |
url | https://doi.org/10.1007/978-94-011-4443-8 |
work_keys_str_mv | AT kusraevag booleanvaluedanalysis AT kutateladzess booleanvaluedanalysis |