Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
1991
|
Series: | Mathematics and Its Applications (Soviet Series)
72 |
Subjects: | |
Online Access: | Volltext |
Item Description: | One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series |
Physical Description: | 1 Online-Ressource (XXIII, 612 p) |
ISBN: | 9789401135382 9789401055666 |
ISSN: | 0169-6378 |
DOI: | 10.1007/978-94-011-3538-2 |
Staff View
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423914 | ||
003 | DE-604 | ||
005 | 20230119 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1991 |||| o||u| ||||||eng d | ||
020 | |a 9789401135382 |c Online |9 978-94-011-3538-2 | ||
020 | |a 9789401055666 |c Print |9 978-94-010-5566-6 | ||
024 | 7 | |a 10.1007/978-94-011-3538-2 |2 doi | |
035 | |a (OCoLC)863677204 | ||
035 | |a (DE-599)BVBBV042423914 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vilenkin, Naum Ja. |d 1920-1991 |e Verfasser |0 (DE-588)127328122 |4 aut | |
245 | 1 | 0 | |a Representation of Lie Groups and Special Functions |b Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms |c by N. Ja. Vilenkin, A. U. Klimyk |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (XXIII, 612 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications (Soviet Series) |v 72 |x 0169-6378 | |
500 | |a One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Functions, special | |
650 | 4 | |a Special Functions | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Klimyk, Anatolij U. |d 1939-2008 |e Sonstige |0 (DE-588)115774580 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-3538-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859331 |
Record in the Search Index
_version_ | 1804153100245663744 |
---|---|
any_adam_object | |
author | Vilenkin, Naum Ja. 1920-1991 |
author_GND | (DE-588)127328122 (DE-588)115774580 |
author_facet | Vilenkin, Naum Ja. 1920-1991 |
author_role | aut |
author_sort | Vilenkin, Naum Ja. 1920-1991 |
author_variant | n j v nj njv |
building | Verbundindex |
bvnumber | BV042423914 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863677204 (DE-599)BVBBV042423914 |
dewey-full | 515.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.5 |
dewey-search | 515.5 |
dewey-sort | 3515.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-3538-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02810nmm a2200505zcb4500</leader><controlfield tag="001">BV042423914</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230119 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401135382</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-3538-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401055666</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5566-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3538-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863677204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423914</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vilenkin, Naum Ja.</subfield><subfield code="d">1920-1991</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)127328122</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Representation of Lie Groups and Special Functions</subfield><subfield code="b">Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms</subfield><subfield code="c">by N. Ja. Vilenkin, A. U. Klimyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 612 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications (Soviet Series)</subfield><subfield code="v">72</subfield><subfield code="x">0169-6378</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions, special</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Special Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klimyk, Anatolij U.</subfield><subfield code="d">1939-2008</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)115774580</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3538-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859331</subfield></datafield></record></collection> |
id | DE-604.BV042423914 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:14Z |
institution | BVB |
isbn | 9789401135382 9789401055666 |
issn | 0169-6378 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859331 |
oclc_num | 863677204 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIII, 612 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications (Soviet Series) |
spelling | Vilenkin, Naum Ja. 1920-1991 Verfasser (DE-588)127328122 aut Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms by N. Ja. Vilenkin, A. U. Klimyk Dordrecht Springer Netherlands 1991 1 Online-Ressource (XXIII, 612 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications (Soviet Series) 72 0169-6378 One service mathematici has rendered the 'Et moi, ... si j'avait IU comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belong., on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense', Eric T. Bell able to do something with it. O. H eaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el;re of this series Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Integral Transforms, Operational Calculus Mathematik Klimyk, Anatolij U. 1939-2008 Sonstige (DE-588)115774580 oth https://doi.org/10.1007/978-94-011-3538-2 Verlag Volltext |
spellingShingle | Vilenkin, Naum Ja. 1920-1991 Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Integral Transforms, Operational Calculus Mathematik |
title | Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms |
title_auth | Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms |
title_exact_search | Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms |
title_full | Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms by N. Ja. Vilenkin, A. U. Klimyk |
title_fullStr | Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms by N. Ja. Vilenkin, A. U. Klimyk |
title_full_unstemmed | Representation of Lie Groups and Special Functions Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms by N. Ja. Vilenkin, A. U. Klimyk |
title_short | Representation of Lie Groups and Special Functions |
title_sort | representation of lie groups and special functions volume 1 simplest lie groups special functions and integral transforms |
title_sub | Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms |
topic | Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Integral Transforms, Operational Calculus Mathematik |
topic_facet | Mathematics Topological Groups Harmonic analysis Integral Transforms Functions, special Special Functions Abstract Harmonic Analysis Topological Groups, Lie Groups Theoretical, Mathematical and Computational Physics Integral Transforms, Operational Calculus Mathematik |
url | https://doi.org/10.1007/978-94-011-3538-2 |
work_keys_str_mv | AT vilenkinnaumja representationofliegroupsandspecialfunctionsvolume1simplestliegroupsspecialfunctionsandintegraltransforms AT klimykanatoliju representationofliegroupsandspecialfunctionsvolume1simplestliegroupsspecialfunctionsandintegraltransforms |