Interpolation Theory and Its Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Mathematics and Its Applications
428 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1. Interpolation problems play an important role both in theoretical and applied investigations. This explains the great number of works dedicated to classical and new interpolation problems ([1)-[5], [8), [13)-[16], [26)-[30], [57]). In this book we use a method of operator identities for investigating interpolation problems. Following the method of operator identities we formulate a general interpolation problem containing the classical interpolation problems (Nevanlinna Pick, Caratheodory, Schur, Humburger, Krein) as particular cases. We write down the abstract form of the Potapov inequality. By solving this inequality we give the description of the set of solutions of the general interpolation problem in the terms of the linear-fractional transformation. Then we apply the obtained general results to a number of classical and new interpolation problems. Some chapters of the book are dedicated to the application of the interpolation theory results to several other problems (the extension problem, generalized stationary processes, spectral theory, nonlinear integrable equations, functions with operator arguments). 2. Now we shall proceed to a more detailed description of the book contents |
Beschreibung: | 1 Online-Ressource (XVIII, 197 p) |
ISBN: | 9789400900592 9789401065160 |
DOI: | 10.1007/978-94-009-0059-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423623 | ||
003 | DE-604 | ||
005 | 20170919 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789400900592 |c Online |9 978-94-009-0059-2 | ||
020 | |a 9789401065160 |c Print |9 978-94-010-6516-0 | ||
024 | 7 | |a 10.1007/978-94-009-0059-2 |2 doi | |
035 | |a (OCoLC)1184417149 | ||
035 | |a (DE-599)BVBBV042423623 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.4 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sachnovič, Lev A. |d 1932- |e Verfasser |0 (DE-588)121081265 |4 aut | |
245 | 1 | 0 | |a Interpolation Theory and Its Applications |c by L. A. Sakhnovich |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XVIII, 197 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 428 | |
500 | |a 1. Interpolation problems play an important role both in theoretical and applied investigations. This explains the great number of works dedicated to classical and new interpolation problems ([1)-[5], [8), [13)-[16], [26)-[30], [57]). In this book we use a method of operator identities for investigating interpolation problems. Following the method of operator identities we formulate a general interpolation problem containing the classical interpolation problems (Nevanlinna Pick, Caratheodory, Schur, Humburger, Krein) as particular cases. We write down the abstract form of the Potapov inequality. By solving this inequality we give the description of the set of solutions of the general interpolation problem in the terms of the linear-fractional transformation. Then we apply the obtained general results to a number of classical and new interpolation problems. Some chapters of the book are dedicated to the application of the interpolation theory results to several other problems (the extension problem, generalized stationary processes, spectral theory, nonlinear integrable equations, functions with operator arguments). 2. Now we shall proceed to a more detailed description of the book contents | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Interpolationsoperator |0 (DE-588)4162122-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Interpolationsoperator |0 (DE-588)4162122-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Mathematics and Its Applications |v 428 |w (DE-604)BV008163334 |9 428 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-0059-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859040 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099586109440 |
---|---|
any_adam_object | |
author | Sachnovič, Lev A. 1932- |
author_GND | (DE-588)121081265 |
author_facet | Sachnovič, Lev A. 1932- |
author_role | aut |
author_sort | Sachnovič, Lev A. 1932- |
author_variant | l a s la las |
building | Verbundindex |
bvnumber | BV042423623 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184417149 (DE-599)BVBBV042423623 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-009-0059-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03098nmm a2200541zcb4500</leader><controlfield tag="001">BV042423623</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400900592</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-0059-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401065160</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-6516-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-0059-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184417149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423623</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sachnovič, Lev A.</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121081265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpolation Theory and Its Applications</subfield><subfield code="c">by L. A. Sakhnovich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 197 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">428</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Interpolation problems play an important role both in theoretical and applied investigations. This explains the great number of works dedicated to classical and new interpolation problems ([1)-[5], [8), [13)-[16], [26)-[30], [57]). In this book we use a method of operator identities for investigating interpolation problems. Following the method of operator identities we formulate a general interpolation problem containing the classical interpolation problems (Nevanlinna Pick, Caratheodory, Schur, Humburger, Krein) as particular cases. We write down the abstract form of the Potapov inequality. By solving this inequality we give the description of the set of solutions of the general interpolation problem in the terms of the linear-fractional transformation. Then we apply the obtained general results to a number of classical and new interpolation problems. Some chapters of the book are dedicated to the application of the interpolation theory results to several other problems (the extension problem, generalized stationary processes, spectral theory, nonlinear integrable equations, functions with operator arguments). 2. Now we shall proceed to a more detailed description of the book contents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolationsoperator</subfield><subfield code="0">(DE-588)4162122-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Interpolationsoperator</subfield><subfield code="0">(DE-588)4162122-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">428</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">428</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-0059-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859040</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423623 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9789400900592 9789401065160 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859040 |
oclc_num | 1184417149 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 197 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Sachnovič, Lev A. 1932- Verfasser (DE-588)121081265 aut Interpolation Theory and Its Applications by L. A. Sakhnovich Dordrecht Springer Netherlands 1997 1 Online-Ressource (XVIII, 197 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 428 1. Interpolation problems play an important role both in theoretical and applied investigations. This explains the great number of works dedicated to classical and new interpolation problems ([1)-[5], [8), [13)-[16], [26)-[30], [57]). In this book we use a method of operator identities for investigating interpolation problems. Following the method of operator identities we formulate a general interpolation problem containing the classical interpolation problems (Nevanlinna Pick, Caratheodory, Schur, Humburger, Krein) as particular cases. We write down the abstract form of the Potapov inequality. By solving this inequality we give the description of the set of solutions of the general interpolation problem in the terms of the linear-fractional transformation. Then we apply the obtained general results to a number of classical and new interpolation problems. Some chapters of the book are dedicated to the application of the interpolation theory results to several other problems (the extension problem, generalized stationary processes, spectral theory, nonlinear integrable equations, functions with operator arguments). 2. Now we shall proceed to a more detailed description of the book contents Mathematics Fourier analysis Operator theory Logic, Symbolic and mathematical Approximations and Expansions Operator Theory Measure and Integration Mathematical Logic and Foundations Fourier Analysis Mathematik Interpolationsoperator (DE-588)4162122-0 gnd rswk-swf Interpolationsoperator (DE-588)4162122-0 s 1\p DE-604 Mathematics and Its Applications 428 (DE-604)BV008163334 428 https://doi.org/10.1007/978-94-009-0059-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sachnovič, Lev A. 1932- Interpolation Theory and Its Applications Mathematics and Its Applications Mathematics Fourier analysis Operator theory Logic, Symbolic and mathematical Approximations and Expansions Operator Theory Measure and Integration Mathematical Logic and Foundations Fourier Analysis Mathematik Interpolationsoperator (DE-588)4162122-0 gnd |
subject_GND | (DE-588)4162122-0 |
title | Interpolation Theory and Its Applications |
title_auth | Interpolation Theory and Its Applications |
title_exact_search | Interpolation Theory and Its Applications |
title_full | Interpolation Theory and Its Applications by L. A. Sakhnovich |
title_fullStr | Interpolation Theory and Its Applications by L. A. Sakhnovich |
title_full_unstemmed | Interpolation Theory and Its Applications by L. A. Sakhnovich |
title_short | Interpolation Theory and Its Applications |
title_sort | interpolation theory and its applications |
topic | Mathematics Fourier analysis Operator theory Logic, Symbolic and mathematical Approximations and Expansions Operator Theory Measure and Integration Mathematical Logic and Foundations Fourier Analysis Mathematik Interpolationsoperator (DE-588)4162122-0 gnd |
topic_facet | Mathematics Fourier analysis Operator theory Logic, Symbolic and mathematical Approximations and Expansions Operator Theory Measure and Integration Mathematical Logic and Foundations Fourier Analysis Mathematik Interpolationsoperator |
url | https://doi.org/10.1007/978-94-009-0059-2 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT sachnovicleva interpolationtheoryanditsapplications |