Strong Shape and Homology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Shape theory is an extension of homotopy theory from the realm of CW-complexes to arbitrary spaces. Besides applications in topology, it has interesting applications in various other areas of mathematics, especially in dynamical systems and C*-algebras. Strong shape is a refinement of ordinary shape with distinct advantages over the latter. Strong homology generalizes Steenrod homology and is an invariant of strong shape. The book gives a detailed account based on approximation of spaces by polyhedra (ANRs) using the technique of inverse systems. It is intended for researchers and graduate students. Special care is devoted to motivation and bibliographic notes |
Beschreibung: | 1 Online-Ressource (XII, 489 p) |
ISBN: | 9783662130643 9783642085468 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-3-662-13064-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423494 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662130643 |c Online |9 978-3-662-13064-3 | ||
020 | |a 9783642085468 |c Print |9 978-3-642-08546-8 | ||
024 | 7 | |a 10.1007/978-3-662-13064-3 |2 doi | |
035 | |a (OCoLC)863973444 | ||
035 | |a (DE-599)BVBBV042423494 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mardešić, Sibe |e Verfasser |4 aut | |
245 | 1 | 0 | |a Strong Shape and Homology |c by Sibe Mardešić |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XII, 489 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a Shape theory is an extension of homotopy theory from the realm of CW-complexes to arbitrary spaces. Besides applications in topology, it has interesting applications in various other areas of mathematics, especially in dynamical systems and C*-algebras. Strong shape is a refinement of ordinary shape with distinct advantages over the latter. Strong homology generalizes Steenrod homology and is an invariant of strong shape. The book gives a detailed account based on approximation of spaces by polyhedra (ANRs) using the technique of inverse systems. It is intended for researchers and graduate students. Special care is devoted to motivation and bibliographic notes | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a K-theory | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Shape-Theorie |0 (DE-588)4193842-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Shape-Theorie |0 (DE-588)4193842-2 |D s |
689 | 0 | 1 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-13064-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858911 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153099297751040 |
---|---|
any_adam_object | |
author | Mardešić, Sibe |
author_facet | Mardešić, Sibe |
author_role | aut |
author_sort | Mardešić, Sibe |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV042423494 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863973444 (DE-599)BVBBV042423494 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-13064-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02359nmm a2200505zc 4500</leader><controlfield tag="001">BV042423494</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662130643</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-13064-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642085468</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08546-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-13064-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863973444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423494</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mardešić, Sibe</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Strong Shape and Homology</subfield><subfield code="c">by Sibe Mardešić</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 489 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Shape theory is an extension of homotopy theory from the realm of CW-complexes to arbitrary spaces. Besides applications in topology, it has interesting applications in various other areas of mathematics, especially in dynamical systems and C*-algebras. Strong shape is a refinement of ordinary shape with distinct advantages over the latter. Strong homology generalizes Steenrod homology and is an invariant of strong shape. The book gives a detailed account based on approximation of spaces by polyhedra (ANRs) using the technique of inverse systems. It is intended for researchers and graduate students. Special care is devoted to motivation and bibliographic notes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Shape-Theorie</subfield><subfield code="0">(DE-588)4193842-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Shape-Theorie</subfield><subfield code="0">(DE-588)4193842-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-13064-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858911</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423494 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662130643 9783642085468 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858911 |
oclc_num | 863973444 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 489 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Mardešić, Sibe Verfasser aut Strong Shape and Homology by Sibe Mardešić Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XII, 489 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 Shape theory is an extension of homotopy theory from the realm of CW-complexes to arbitrary spaces. Besides applications in topology, it has interesting applications in various other areas of mathematics, especially in dynamical systems and C*-algebras. Strong shape is a refinement of ordinary shape with distinct advantages over the latter. Strong homology generalizes Steenrod homology and is an invariant of strong shape. The book gives a detailed account based on approximation of spaces by polyhedra (ANRs) using the technique of inverse systems. It is intended for researchers and graduate students. Special care is devoted to motivation and bibliographic notes Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Shape-Theorie (DE-588)4193842-2 gnd rswk-swf Homologietheorie (DE-588)4141714-8 gnd rswk-swf Shape-Theorie (DE-588)4193842-2 s Homologietheorie (DE-588)4141714-8 s 1\p DE-604 https://doi.org/10.1007/978-3-662-13064-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mardešić, Sibe Strong Shape and Homology Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Shape-Theorie (DE-588)4193842-2 gnd Homologietheorie (DE-588)4141714-8 gnd |
subject_GND | (DE-588)4193842-2 (DE-588)4141714-8 |
title | Strong Shape and Homology |
title_auth | Strong Shape and Homology |
title_exact_search | Strong Shape and Homology |
title_full | Strong Shape and Homology by Sibe Mardešić |
title_fullStr | Strong Shape and Homology by Sibe Mardešić |
title_full_unstemmed | Strong Shape and Homology by Sibe Mardešić |
title_short | Strong Shape and Homology |
title_sort | strong shape and homology |
topic | Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Shape-Theorie (DE-588)4193842-2 gnd Homologietheorie (DE-588)4141714-8 gnd |
topic_facet | Mathematics K-theory Algebraic topology Algebraic Topology K-Theory Mathematik Shape-Theorie Homologietheorie |
url | https://doi.org/10.1007/978-3-662-13064-3 |
work_keys_str_mv | AT mardesicsibe strongshapeandhomology |