Cartesian Currents in the Calculus of Variations II: Variational Integrals
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1998
|
Series: | Ergebnisse der Mathematik und ihrer Grenzgebiete / 3. Folge. A Series of Modern Surveys in Mathematics
38 |
Subjects: | |
Online Access: | Volltext |
Item Description: | Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial |
Physical Description: | 1 Online-Ressource (XXIV, 700 p) |
ISBN: | 9783662062180 9783642083754 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-662-06218-0 |
Staff View
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423368 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783662062180 |c Online |9 978-3-662-06218-0 | ||
020 | |a 9783642083754 |c Print |9 978-3-642-08375-4 | ||
024 | 7 | |a 10.1007/978-3-662-06218-0 |2 doi | |
035 | |a (OCoLC)863954489 | ||
035 | |a (DE-599)BVBBV042423368 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Giaquinta, Mariano |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cartesian Currents in the Calculus of Variations II |b Variational Integrals |c by Mariano Giaquinta, Giuseppe Modica, Jiří Souček |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1998 | |
300 | |a 1 Online-Ressource (XXIV, 700 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete / 3. Folge. A Series of Modern Surveys in Mathematics |v 38 |x 0071-1136 | |
500 | |a Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Modica, Giuseppe |e Sonstige |4 oth | |
700 | 1 | |a Souček, Jiří |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06218-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858785 |
Record in the Search Index
_version_ | 1804153099039801344 |
---|---|
any_adam_object | |
author | Giaquinta, Mariano |
author_facet | Giaquinta, Mariano |
author_role | aut |
author_sort | Giaquinta, Mariano |
author_variant | m g mg |
building | Verbundindex |
bvnumber | BV042423368 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863954489 (DE-599)BVBBV042423368 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-06218-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03114nmm a2200457zcb4500</leader><controlfield tag="001">BV042423368</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662062180</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06218-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642083754</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08375-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06218-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863954489</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423368</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Giaquinta, Mariano</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cartesian Currents in the Calculus of Variations II</subfield><subfield code="b">Variational Integrals</subfield><subfield code="c">by Mariano Giaquinta, Giuseppe Modica, Jiří Souček</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 700 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete / 3. Folge. A Series of Modern Surveys in Mathematics</subfield><subfield code="v">38</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Modica, Giuseppe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Souček, Jiří</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06218-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858785</subfield></datafield></record></collection> |
id | DE-604.BV042423368 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662062180 9783642083754 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858785 |
oclc_num | 863954489 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIV, 700 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete / 3. Folge. A Series of Modern Surveys in Mathematics |
spelling | Giaquinta, Mariano Verfasser aut Cartesian Currents in the Calculus of Variations II Variational Integrals by Mariano Giaquinta, Giuseppe Modica, Jiří Souček Berlin, Heidelberg Springer Berlin Heidelberg 1998 1 Online-Ressource (XXIV, 700 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete / 3. Folge. A Series of Modern Surveys in Mathematics 38 0071-1136 Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial Mathematics Global analysis (Mathematics) Geometry Analysis Theoretical, Mathematical and Computational Physics Mathematik Modica, Giuseppe Sonstige oth Souček, Jiří Sonstige oth https://doi.org/10.1007/978-3-662-06218-0 Verlag Volltext |
spellingShingle | Giaquinta, Mariano Cartesian Currents in the Calculus of Variations II Variational Integrals Mathematics Global analysis (Mathematics) Geometry Analysis Theoretical, Mathematical and Computational Physics Mathematik |
title | Cartesian Currents in the Calculus of Variations II Variational Integrals |
title_auth | Cartesian Currents in the Calculus of Variations II Variational Integrals |
title_exact_search | Cartesian Currents in the Calculus of Variations II Variational Integrals |
title_full | Cartesian Currents in the Calculus of Variations II Variational Integrals by Mariano Giaquinta, Giuseppe Modica, Jiří Souček |
title_fullStr | Cartesian Currents in the Calculus of Variations II Variational Integrals by Mariano Giaquinta, Giuseppe Modica, Jiří Souček |
title_full_unstemmed | Cartesian Currents in the Calculus of Variations II Variational Integrals by Mariano Giaquinta, Giuseppe Modica, Jiří Souček |
title_short | Cartesian Currents in the Calculus of Variations II |
title_sort | cartesian currents in the calculus of variations ii variational integrals |
title_sub | Variational Integrals |
topic | Mathematics Global analysis (Mathematics) Geometry Analysis Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Global analysis (Mathematics) Geometry Analysis Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-3-662-06218-0 |
work_keys_str_mv | AT giaquintamariano cartesiancurrentsinthecalculusofvariationsiivariationalintegrals AT modicagiuseppe cartesiancurrentsinthecalculusofvariationsiivariationalintegrals AT soucekjiri cartesiancurrentsinthecalculusofvariationsiivariationalintegrals |