Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1995
|
Schriftenreihe: | Encyclopaedia of Mathematical Sciences
66 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The book deals with smooth dynamical systems with hyperbolic behaviour of trajectories filling out "large subsets" of the phase space. Such systems lead to complicated motion (so-called "chaos"). The book begins with a discussion of the topological manifestations of uniform and total hyperbolicity: hyperbolic sets, Smale's Axiom A, structurally stable systems, Anosov systems, and hyperbolic attractors of dimension or codimension one. There are various modifications of hyperbolicity and in this connection the properties of Lorenz attractors, pseudo-analytic Thurston diffeomorphisms, and homogeneous flows with expanding and contracting foliations are investigated. These last two questions are discussed in the general context of the theory of homeomorphisms of surfaces and of homogeneous flows |
Beschreibung: | 1 Online-Ressource (VIII, 236 p) |
ISBN: | 9783662031728 9783642081682 |
ISSN: | 0938-0396 |
DOI: | 10.1007/978-3-662-03172-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423241 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783662031728 |c Online |9 978-3-662-03172-8 | ||
020 | |a 9783642081682 |c Print |9 978-3-642-08168-2 | ||
024 | 7 | |a 10.1007/978-3-662-03172-8 |2 doi | |
035 | |a (OCoLC)863903689 | ||
035 | |a (DE-599)BVBBV042423241 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.34 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Anosov, D. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamical Systems IX |b Dynamical Systems with Hyperbolic Behaviour |c edited by D. V. Anosov |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1995 | |
300 | |a 1 Online-Ressource (VIII, 236 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopaedia of Mathematical Sciences |v 66 |x 0938-0396 | |
500 | |a The book deals with smooth dynamical systems with hyperbolic behaviour of trajectories filling out "large subsets" of the phase space. Such systems lead to complicated motion (so-called "chaos"). The book begins with a discussion of the topological manifestations of uniform and total hyperbolicity: hyperbolic sets, Smale's Axiom A, structurally stable systems, Anosov systems, and hyperbolic attractors of dimension or codimension one. There are various modifications of hyperbolicity and in this connection the properties of Lorenz attractors, pseudo-analytic Thurston diffeomorphisms, and homogeneous flows with expanding and contracting foliations are investigated. These last two questions are discussed in the general context of the theory of homeomorphisms of surfaces and of homogeneous flows | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03172-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858658 |
Datensatz im Suchindex
_version_ | 1804153098740957184 |
---|---|
any_adam_object | |
author | Anosov, D. V. |
author_facet | Anosov, D. V. |
author_role | aut |
author_sort | Anosov, D. V. |
author_variant | d v a dv dva |
building | Verbundindex |
bvnumber | BV042423241 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863903689 (DE-599)BVBBV042423241 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-03172-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02472nmm a2200493zcb4500</leader><controlfield tag="001">BV042423241</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662031728</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03172-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081682</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08168-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03172-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863903689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423241</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anosov, D. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical Systems IX</subfield><subfield code="b">Dynamical Systems with Hyperbolic Behaviour</subfield><subfield code="c">edited by D. V. Anosov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 236 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">66</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book deals with smooth dynamical systems with hyperbolic behaviour of trajectories filling out "large subsets" of the phase space. Such systems lead to complicated motion (so-called "chaos"). The book begins with a discussion of the topological manifestations of uniform and total hyperbolicity: hyperbolic sets, Smale's Axiom A, structurally stable systems, Anosov systems, and hyperbolic attractors of dimension or codimension one. There are various modifications of hyperbolicity and in this connection the properties of Lorenz attractors, pseudo-analytic Thurston diffeomorphisms, and homogeneous flows with expanding and contracting foliations are investigated. These last two questions are discussed in the general context of the theory of homeomorphisms of surfaces and of homogeneous flows</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03172-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858658</subfield></datafield></record></collection> |
id | DE-604.BV042423241 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:13Z |
institution | BVB |
isbn | 9783662031728 9783642081682 |
issn | 0938-0396 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858658 |
oclc_num | 863903689 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 236 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopaedia of Mathematical Sciences |
spelling | Anosov, D. V. Verfasser aut Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour edited by D. V. Anosov Berlin, Heidelberg Springer Berlin Heidelberg 1995 1 Online-Ressource (VIII, 236 p) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of Mathematical Sciences 66 0938-0396 The book deals with smooth dynamical systems with hyperbolic behaviour of trajectories filling out "large subsets" of the phase space. Such systems lead to complicated motion (so-called "chaos"). The book begins with a discussion of the topological manifestations of uniform and total hyperbolicity: hyperbolic sets, Smale's Axiom A, structurally stable systems, Anosov systems, and hyperbolic attractors of dimension or codimension one. There are various modifications of hyperbolicity and in this connection the properties of Lorenz attractors, pseudo-analytic Thurston diffeomorphisms, and homogeneous flows with expanding and contracting foliations are investigated. These last two questions are discussed in the general context of the theory of homeomorphisms of surfaces and of homogeneous flows Mathematics Topological Groups Cell aggregation / Mathematics Mathematical physics Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Topological Groups, Lie Groups Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik https://doi.org/10.1007/978-3-662-03172-8 Verlag Volltext |
spellingShingle | Anosov, D. V. Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour Mathematics Topological Groups Cell aggregation / Mathematics Mathematical physics Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Topological Groups, Lie Groups Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
title | Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour |
title_auth | Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour |
title_exact_search | Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour |
title_full | Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour edited by D. V. Anosov |
title_fullStr | Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour edited by D. V. Anosov |
title_full_unstemmed | Dynamical Systems IX Dynamical Systems with Hyperbolic Behaviour edited by D. V. Anosov |
title_short | Dynamical Systems IX |
title_sort | dynamical systems ix dynamical systems with hyperbolic behaviour |
title_sub | Dynamical Systems with Hyperbolic Behaviour |
topic | Mathematics Topological Groups Cell aggregation / Mathematics Mathematical physics Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Topological Groups, Lie Groups Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
topic_facet | Mathematics Topological Groups Cell aggregation / Mathematics Mathematical physics Manifolds and Cell Complexes (incl. Diff.Topology) Real Functions Topological Groups, Lie Groups Mathematical Methods in Physics Numerical and Computational Physics Mathematik Mathematische Physik |
url | https://doi.org/10.1007/978-3-662-03172-8 |
work_keys_str_mv | AT anosovdv dynamicalsystemsixdynamicalsystemswithhyperbolicbehaviour |