Learning Higher Mathematics: Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1984
|
Schriftenreihe: | Springer Series in Soviet Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge ometry in the plane and 3-dimensional space. Refinements about limits and the nature of real numbers come only later. Many concrete examples are given; these may take the place of formal exercises, which the book does not provide. The book continues with careful treatment of differentiation and integration, of limits, of expansions of elementary functions in power se ries |
Beschreibung: | 1 Online-Ressource (VIII, 308 p.) 1 illus |
ISBN: | 9783642690402 9783540123514 |
ISSN: | 0939-1169 |
DOI: | 10.1007/978-3-642-69040-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422938 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1984 |||| o||u| ||||||eng d | ||
020 | |a 9783642690402 |c Online |9 978-3-642-69040-2 | ||
020 | |a 9783540123514 |c Print |9 978-3-540-12351-4 | ||
024 | 7 | |a 10.1007/978-3-642-69040-2 |2 doi | |
035 | |a (OCoLC)863788732 | ||
035 | |a (DE-599)BVBBV042422938 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pontrjagin, Lev Semenovič |e Verfasser |4 aut | |
245 | 1 | 0 | |a Learning Higher Mathematics |b Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small |c by Lev Semenovič Pontrjagin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1984 | |
300 | |a 1 Online-Ressource (VIII, 308 p.) |b 1 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Soviet Mathematics |x 0939-1169 | |
500 | |a Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge ometry in the plane and 3-dimensional space. Refinements about limits and the nature of real numbers come only later. Many concrete examples are given; these may take the place of formal exercises, which the book does not provide. The book continues with careful treatment of differentiation and integration, of limits, of expansions of elementary functions in power se ries | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-69040-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858355 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153098013245440 |
---|---|
any_adam_object | |
author | Pontrjagin, Lev Semenovič |
author_facet | Pontrjagin, Lev Semenovič |
author_role | aut |
author_sort | Pontrjagin, Lev Semenovič |
author_variant | l s p ls lsp |
building | Verbundindex |
bvnumber | BV042422938 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863788732 (DE-599)BVBBV042422938 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-69040-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03584nmm a2200577zc 4500</leader><controlfield tag="001">BV042422938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642690402</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-69040-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540123514</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-12351-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-69040-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863788732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pontrjagin, Lev Semenovič</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning Higher Mathematics</subfield><subfield code="b">Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small</subfield><subfield code="c">by Lev Semenovič Pontrjagin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 308 p.)</subfield><subfield code="b">1 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Soviet Mathematics</subfield><subfield code="x">0939-1169</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge ometry in the plane and 3-dimensional space. Refinements about limits and the nature of real numbers come only later. Many concrete examples are given; these may take the place of formal exercises, which the book does not provide. The book continues with careful treatment of differentiation and integration, of limits, of expansions of elementary functions in power se ries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-69040-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858355</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042422938 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:12Z |
institution | BVB |
isbn | 9783642690402 9783540123514 |
issn | 0939-1169 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858355 |
oclc_num | 863788732 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 308 p.) 1 illus |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Soviet Mathematics |
spelling | Pontrjagin, Lev Semenovič Verfasser aut Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small by Lev Semenovič Pontrjagin Berlin, Heidelberg Springer Berlin Heidelberg 1984 1 Online-Ressource (VIII, 308 p.) 1 illus txt rdacontent c rdamedia cr rdacarrier Springer Series in Soviet Mathematics 0939-1169 Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge ometry in the plane and 3-dimensional space. Refinements about limits and the nature of real numbers come only later. Many concrete examples are given; these may take the place of formal exercises, which the book does not provide. The book continues with careful treatment of differentiation and integration, of limits, of expansions of elementary functions in power se ries Mathematics Global analysis (Mathematics) Analysis Mathematik Analysis (DE-588)4001865-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Mathematik (DE-588)4037944-9 s 2\p DE-604 Analysis (DE-588)4001865-9 s 3\p DE-604 Funktionentheorie (DE-588)4018935-1 s 4\p DE-604 https://doi.org/10.1007/978-3-642-69040-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pontrjagin, Lev Semenovič Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small Mathematics Global analysis (Mathematics) Analysis Mathematik Analysis (DE-588)4001865-9 gnd Mathematik (DE-588)4037944-9 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4001865-9 (DE-588)4037944-9 (DE-588)4018935-1 (DE-588)4151278-9 |
title | Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small |
title_auth | Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small |
title_exact_search | Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small |
title_full | Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small by Lev Semenovič Pontrjagin |
title_fullStr | Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small by Lev Semenovič Pontrjagin |
title_full_unstemmed | Learning Higher Mathematics Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small by Lev Semenovič Pontrjagin |
title_short | Learning Higher Mathematics |
title_sort | learning higher mathematics part i the method of coordinates part ii analysis of the infinitely small |
title_sub | Part I: The Method of Coordinates Part II: Analysis of the Infinitely Small |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Analysis (DE-588)4001865-9 gnd Mathematik (DE-588)4037944-9 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Funktionentheorie Einführung |
url | https://doi.org/10.1007/978-3-642-69040-2 |
work_keys_str_mv | AT pontrjaginlevsemenovic learninghighermathematicspartithemethodofcoordinatespartiianalysisoftheinfinitelysmall |