Classical Potential Theory and Its Probabilistic Counterpart:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2001
|
Schriftenreihe: | Classics in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986) |
Beschreibung: | 1 Online-Ressource (L, 1551 p) |
ISBN: | 9783642565731 9783540412069 |
ISSN: | 1431-0821 |
DOI: | 10.1007/978-3-642-56573-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422649 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783642565731 |c Online |9 978-3-642-56573-1 | ||
020 | |a 9783540412069 |c Print |9 978-3-540-41206-9 | ||
024 | 7 | |a 10.1007/978-3-642-56573-1 |2 doi | |
035 | |a (OCoLC)863699652 | ||
035 | |a (DE-599)BVBBV042422649 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.96 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Doob, Joseph L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Classical Potential Theory and Its Probabilistic Counterpart |c by Joseph L. Doob |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2001 | |
300 | |a 1 Online-Ressource (L, 1551 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Classics in Mathematics |x 1431-0821 | |
500 | |a From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Potential Theory | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingaltheorie |0 (DE-588)4168982-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 0 | 1 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 0 | 2 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | 3 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 1 | 1 | |a Martingaltheorie |0 (DE-588)4168982-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-56573-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858066 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097398779904 |
---|---|
any_adam_object | |
author | Doob, Joseph L. |
author_facet | Doob, Joseph L. |
author_role | aut |
author_sort | Doob, Joseph L. |
author_variant | j l d jl jld |
building | Verbundindex |
bvnumber | BV042422649 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863699652 (DE-599)BVBBV042422649 |
dewey-full | 515.96 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.96 |
dewey-search | 515.96 |
dewey-sort | 3515.96 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-56573-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03044nmm a2200613zc 4500</leader><controlfield tag="001">BV042422649</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642565731</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-56573-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540412069</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-41206-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-56573-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863699652</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422649</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.96</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doob, Joseph L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical Potential Theory and Its Probabilistic Counterpart</subfield><subfield code="c">by Joseph L. Doob</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (L, 1551 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Classics in Mathematics</subfield><subfield code="x">1431-0821</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Martingaltheorie</subfield><subfield code="0">(DE-588)4168982-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-56573-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858066</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422649 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642565731 9783540412069 |
issn | 1431-0821 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858066 |
oclc_num | 863699652 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (L, 1551 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Classics in Mathematics |
spelling | Doob, Joseph L. Verfasser aut Classical Potential Theory and Its Probabilistic Counterpart by Joseph L. Doob Berlin, Heidelberg Springer Berlin Heidelberg 2001 1 Online-Ressource (L, 1551 p) txt rdacontent c rdamedia cr rdacarrier Classics in Mathematics 1431-0821 From the reviews: "This huge book written in several years by one of the few mathematicians able to do it, appears as a precise and impressive study (not very easy to read) of this bothsided question that replaces, in a coherent way, without being encyclopaedic, a large library of books and papers scattered without a uniform language. Instead of summarizing the author gives his own way of exposition with original complements. This requires no preliminary knowledge. ...The purpose which the author explains in his introduction, i.e. a deep probabilistic interpretation of potential theory and a link between two great theories, appears fulfilled in a masterly manner". M. Brelot in Metrika (1986) Mathematics Potential theory (Mathematics) Distribution (Probability theory) Potential Theory Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Martingal (DE-588)4126466-6 gnd rswk-swf Martingaltheorie (DE-588)4168982-3 gnd rswk-swf Potenzialtheorie (DE-588)4046939-6 s Martingal (DE-588)4126466-6 s Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s Stochastischer Prozess (DE-588)4057630-9 s 1\p DE-604 Martingaltheorie (DE-588)4168982-3 s 2\p DE-604 https://doi.org/10.1007/978-3-642-56573-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Doob, Joseph L. Classical Potential Theory and Its Probabilistic Counterpart Mathematics Potential theory (Mathematics) Distribution (Probability theory) Potential Theory Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Potenzialtheorie (DE-588)4046939-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Martingal (DE-588)4126466-6 gnd Martingaltheorie (DE-588)4168982-3 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4046939-6 (DE-588)4057630-9 (DE-588)4126466-6 (DE-588)4168982-3 |
title | Classical Potential Theory and Its Probabilistic Counterpart |
title_auth | Classical Potential Theory and Its Probabilistic Counterpart |
title_exact_search | Classical Potential Theory and Its Probabilistic Counterpart |
title_full | Classical Potential Theory and Its Probabilistic Counterpart by Joseph L. Doob |
title_fullStr | Classical Potential Theory and Its Probabilistic Counterpart by Joseph L. Doob |
title_full_unstemmed | Classical Potential Theory and Its Probabilistic Counterpart by Joseph L. Doob |
title_short | Classical Potential Theory and Its Probabilistic Counterpart |
title_sort | classical potential theory and its probabilistic counterpart |
topic | Mathematics Potential theory (Mathematics) Distribution (Probability theory) Potential Theory Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Potenzialtheorie (DE-588)4046939-6 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Martingal (DE-588)4126466-6 gnd Martingaltheorie (DE-588)4168982-3 gnd |
topic_facet | Mathematics Potential theory (Mathematics) Distribution (Probability theory) Potential Theory Probability Theory and Stochastic Processes Mathematik Wahrscheinlichkeitsrechnung Potenzialtheorie Stochastischer Prozess Martingal Martingaltheorie |
url | https://doi.org/10.1007/978-3-642-56573-1 |
work_keys_str_mv | AT doobjosephl classicalpotentialtheoryanditsprobabilisticcounterpart |