Wavelet Methods — Elliptic Boundary Value Problems and Control Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
2001
|
Schriftenreihe: | Advances in Numerical Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This research monograph deals with applying recently developed wavelet methods to stationary operator equations involving elliptic differential equations. Particular emphasis is placed on the treatment of the boundary and the boundary conditions. While wavelets have since their discovery mainly been applied to problems in signal analysis and image compression, their analytic power has also been recognized for problems in Numerical Analysis. Together with the functional analytic framework for differential and integral quations, one has been able to conceptually discuss questions which are relevant for the fast numerical solution of such problems: preconditioning, stable discretizations, compression of full matrices, evaluation of difficult norms, and adaptive refinements. The present text focusses on wavelet methods for elliptic boundary value problems and control problems to show the conceptual strengths of wavelet techniques |
Beschreibung: | 1 Online-Ressource (X, 141 p) |
ISBN: | 9783322800275 9783519003274 |
ISSN: | 1616-2994 |
DOI: | 10.1007/978-3-322-80027-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422352 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783322800275 |c Online |9 978-3-322-80027-5 | ||
020 | |a 9783519003274 |c Print |9 978-3-519-00327-4 | ||
024 | 7 | |a 10.1007/978-3-322-80027-5 |2 doi | |
035 | |a (OCoLC)1184496012 | ||
035 | |a (DE-599)BVBBV042422352 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kunoth, Angela |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wavelet Methods — Elliptic Boundary Value Problems and Control Problems |c by Angela Kunoth |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 2001 | |
300 | |a 1 Online-Ressource (X, 141 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Numerical Mathematics |x 1616-2994 | |
500 | |a This research monograph deals with applying recently developed wavelet methods to stationary operator equations involving elliptic differential equations. Particular emphasis is placed on the treatment of the boundary and the boundary conditions. While wavelets have since their discovery mainly been applied to problems in signal analysis and image compression, their analytic power has also been recognized for problems in Numerical Analysis. Together with the functional analytic framework for differential and integral quations, one has been able to conceptually discuss questions which are relevant for the fast numerical solution of such problems: preconditioning, stable discretizations, compression of full matrices, evaluation of difficult norms, and adaptive refinements. The present text focusses on wavelet methods for elliptic boundary value problems and control problems to show the conceptual strengths of wavelet techniques | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regelungstheorie |0 (DE-588)4122327-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | 1 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |D s |
689 | 0 | 2 | |a Regelungstheorie |0 (DE-588)4122327-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 1 | 1 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-80027-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857769 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096700428288 |
---|---|
any_adam_object | |
author | Kunoth, Angela |
author_facet | Kunoth, Angela |
author_role | aut |
author_sort | Kunoth, Angela |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV042422352 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184496012 (DE-599)BVBBV042422352 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-80027-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03065nmm a2200577zc 4500</leader><controlfield tag="001">BV042422352</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322800275</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-80027-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783519003274</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-519-00327-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-80027-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184496012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422352</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kunoth, Angela</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wavelet Methods — Elliptic Boundary Value Problems and Control Problems</subfield><subfield code="c">by Angela Kunoth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 141 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Numerical Mathematics</subfield><subfield code="x">1616-2994</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This research monograph deals with applying recently developed wavelet methods to stationary operator equations involving elliptic differential equations. Particular emphasis is placed on the treatment of the boundary and the boundary conditions. While wavelets have since their discovery mainly been applied to problems in signal analysis and image compression, their analytic power has also been recognized for problems in Numerical Analysis. Together with the functional analytic framework for differential and integral quations, one has been able to conceptually discuss questions which are relevant for the fast numerical solution of such problems: preconditioning, stable discretizations, compression of full matrices, evaluation of difficult norms, and adaptive refinements. The present text focusses on wavelet methods for elliptic boundary value problems and control problems to show the conceptual strengths of wavelet techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelungstheorie</subfield><subfield code="0">(DE-588)4122327-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Regelungstheorie</subfield><subfield code="0">(DE-588)4122327-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-80027-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857769</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422352 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783322800275 9783519003274 |
issn | 1616-2994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857769 |
oclc_num | 1184496012 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 141 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Advances in Numerical Mathematics |
spelling | Kunoth, Angela Verfasser aut Wavelet Methods — Elliptic Boundary Value Problems and Control Problems by Angela Kunoth Wiesbaden Vieweg+Teubner Verlag 2001 1 Online-Ressource (X, 141 p) txt rdacontent c rdamedia cr rdacarrier Advances in Numerical Mathematics 1616-2994 This research monograph deals with applying recently developed wavelet methods to stationary operator equations involving elliptic differential equations. Particular emphasis is placed on the treatment of the boundary and the boundary conditions. While wavelets have since their discovery mainly been applied to problems in signal analysis and image compression, their analytic power has also been recognized for problems in Numerical Analysis. Together with the functional analytic framework for differential and integral quations, one has been able to conceptually discuss questions which are relevant for the fast numerical solution of such problems: preconditioning, stable discretizations, compression of full matrices, evaluation of difficult norms, and adaptive refinements. The present text focusses on wavelet methods for elliptic boundary value problems and control problems to show the conceptual strengths of wavelet techniques Mathematics Global analysis (Mathematics) Analysis Applications of Mathematics Mathematik Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Wavelet (DE-588)4215427-3 gnd rswk-swf Elliptisches Randwertproblem (DE-588)4193399-0 gnd rswk-swf Regelungstheorie (DE-588)4122327-5 gnd rswk-swf Wavelet (DE-588)4215427-3 s Elliptisches Randwertproblem (DE-588)4193399-0 s Regelungstheorie (DE-588)4122327-5 s 1\p DE-604 Kontrolltheorie (DE-588)4032317-1 s 2\p DE-604 https://doi.org/10.1007/978-3-322-80027-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kunoth, Angela Wavelet Methods — Elliptic Boundary Value Problems and Control Problems Mathematics Global analysis (Mathematics) Analysis Applications of Mathematics Mathematik Kontrolltheorie (DE-588)4032317-1 gnd Wavelet (DE-588)4215427-3 gnd Elliptisches Randwertproblem (DE-588)4193399-0 gnd Regelungstheorie (DE-588)4122327-5 gnd |
subject_GND | (DE-588)4032317-1 (DE-588)4215427-3 (DE-588)4193399-0 (DE-588)4122327-5 |
title | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems |
title_auth | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems |
title_exact_search | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems |
title_full | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems by Angela Kunoth |
title_fullStr | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems by Angela Kunoth |
title_full_unstemmed | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems by Angela Kunoth |
title_short | Wavelet Methods — Elliptic Boundary Value Problems and Control Problems |
title_sort | wavelet methods elliptic boundary value problems and control problems |
topic | Mathematics Global analysis (Mathematics) Analysis Applications of Mathematics Mathematik Kontrolltheorie (DE-588)4032317-1 gnd Wavelet (DE-588)4215427-3 gnd Elliptisches Randwertproblem (DE-588)4193399-0 gnd Regelungstheorie (DE-588)4122327-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Applications of Mathematics Mathematik Kontrolltheorie Wavelet Elliptisches Randwertproblem Regelungstheorie |
url | https://doi.org/10.1007/978-3-322-80027-5 |
work_keys_str_mv | AT kunothangela waveletmethodsellipticboundaryvalueproblemsandcontrolproblems |