Linear Representations of Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1989
|
Schriftenreihe: | Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book gives an exposition of the fundamentals of the theory of linear representations of finite and compact groups, as well as elements of the the ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the field under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of finite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely ap plied branches of algebra. Practically every time that groups are encountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. O. |
Beschreibung: | 1 Online-Ressource (VI, 146 p) |
ISBN: | 9783034892742 9783034899734 |
DOI: | 10.1007/978-3-0348-9274-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422339 | ||
003 | DE-604 | ||
005 | 20200512 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1989 |||| o||u| ||||||eng d | ||
020 | |a 9783034892742 |c Online |9 978-3-0348-9274-2 | ||
020 | |a 9783034899734 |c Print |9 978-3-0348-9973-4 | ||
024 | 7 | |a 10.1007/978-3-0348-9274-2 |2 doi | |
035 | |a (OCoLC)863882034 | ||
035 | |a (DE-599)BVBBV042422339 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vinberg, Ėrnest B. |d 1937-2020 |e Verfasser |0 (DE-588)115668063 |4 aut | |
245 | 1 | 0 | |a Linear Representations of Groups |c by Ernest B. Vinberg |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1989 | |
300 | |a 1 Online-Ressource (VI, 146 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics | |
500 | |a This book gives an exposition of the fundamentals of the theory of linear representations of finite and compact groups, as well as elements of the the ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the field under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of finite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely ap plied branches of algebra. Practically every time that groups are encountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. O. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Darstellung |0 (DE-588)4167703-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Lineare Darstellung |0 (DE-588)4167703-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 1 | 1 | |a Lineare Darstellung |0 (DE-588)4167703-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 2 | 1 | |a Lineare Darstellung |0 (DE-588)4167703-1 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Kompakte Gruppe |0 (DE-588)4164840-7 |D s |
689 | 3 | 1 | |a Lineare Darstellung |0 (DE-588)4167703-1 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9274-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857756 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096635416576 |
---|---|
any_adam_object | |
author | Vinberg, Ėrnest B. 1937-2020 |
author_GND | (DE-588)115668063 |
author_facet | Vinberg, Ėrnest B. 1937-2020 |
author_role | aut |
author_sort | Vinberg, Ėrnest B. 1937-2020 |
author_variant | ė b v ėb ėbv |
building | Verbundindex |
bvnumber | BV042422339 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863882034 (DE-599)BVBBV042422339 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9274-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04125nmm a2200673zc 4500</leader><controlfield tag="001">BV042422339</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200512 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034892742</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9274-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034899734</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9973-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9274-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863882034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vinberg, Ėrnest B.</subfield><subfield code="d">1937-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115668063</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Representations of Groups</subfield><subfield code="c">by Ernest B. Vinberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 146 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book gives an exposition of the fundamentals of the theory of linear representations of finite and compact groups, as well as elements of the the ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the field under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of finite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely ap plied branches of algebra. Practically every time that groups are encountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. O.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Darstellung</subfield><subfield code="0">(DE-588)4167703-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Darstellung</subfield><subfield code="0">(DE-588)4167703-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Lineare Darstellung</subfield><subfield code="0">(DE-588)4167703-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Lineare Darstellung</subfield><subfield code="0">(DE-588)4167703-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kompakte Gruppe</subfield><subfield code="0">(DE-588)4164840-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Lineare Darstellung</subfield><subfield code="0">(DE-588)4167703-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9274-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857756</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042422339 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783034892742 9783034899734 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857756 |
oclc_num | 863882034 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 146 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics |
spelling | Vinberg, Ėrnest B. 1937-2020 Verfasser (DE-588)115668063 aut Linear Representations of Groups by Ernest B. Vinberg Basel Birkhäuser Basel 1989 1 Online-Ressource (VI, 146 p) txt rdacontent c rdamedia cr rdacarrier Basler Lehrbücher, A Series of Advanced Textbooks in Mathematics This book gives an exposition of the fundamentals of the theory of linear representations of finite and compact groups, as well as elements of the the ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the field under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of finite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely ap plied branches of algebra. Practically every time that groups are encountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. O. Mathematics Algebra Mathematik Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Kompakte Gruppe (DE-588)4164840-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lineare Darstellung (DE-588)4167703-1 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Gruppentheorie (DE-588)4072157-7 s Lineare Darstellung (DE-588)4167703-1 s 2\p DE-604 Endliche Gruppe (DE-588)4014651-0 s 3\p DE-604 Lie-Gruppe (DE-588)4035695-4 s 4\p DE-604 Kompakte Gruppe (DE-588)4164840-7 s 5\p DE-604 https://doi.org/10.1007/978-3-0348-9274-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vinberg, Ėrnest B. 1937-2020 Linear Representations of Groups Mathematics Algebra Mathematik Endliche Gruppe (DE-588)4014651-0 gnd Kompakte Gruppe (DE-588)4164840-7 gnd Gruppentheorie (DE-588)4072157-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Lineare Darstellung (DE-588)4167703-1 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4164840-7 (DE-588)4072157-7 (DE-588)4035695-4 (DE-588)4167703-1 (DE-588)4123623-3 |
title | Linear Representations of Groups |
title_auth | Linear Representations of Groups |
title_exact_search | Linear Representations of Groups |
title_full | Linear Representations of Groups by Ernest B. Vinberg |
title_fullStr | Linear Representations of Groups by Ernest B. Vinberg |
title_full_unstemmed | Linear Representations of Groups by Ernest B. Vinberg |
title_short | Linear Representations of Groups |
title_sort | linear representations of groups |
topic | Mathematics Algebra Mathematik Endliche Gruppe (DE-588)4014651-0 gnd Kompakte Gruppe (DE-588)4164840-7 gnd Gruppentheorie (DE-588)4072157-7 gnd Lie-Gruppe (DE-588)4035695-4 gnd Lineare Darstellung (DE-588)4167703-1 gnd |
topic_facet | Mathematics Algebra Mathematik Endliche Gruppe Kompakte Gruppe Gruppentheorie Lie-Gruppe Lineare Darstellung Lehrbuch |
url | https://doi.org/10.1007/978-3-0348-9274-2 |
work_keys_str_mv | AT vinbergernestb linearrepresentationsofgroups |