Topics in Hardy Classes and Univalent Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1994
|
Schriftenreihe: | Birkhäuser Advanced Texts, Basler Lehrbücher
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origi nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from proper ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course |
Beschreibung: | 1 Online-Ressource (XII, 250 p) |
ISBN: | 9783034885201 9783034896627 |
DOI: | 10.1007/978-3-0348-8520-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422149 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783034885201 |c Online |9 978-3-0348-8520-1 | ||
020 | |a 9783034896627 |c Print |9 978-3-0348-9662-7 | ||
024 | 7 | |a 10.1007/978-3-0348-8520-1 |2 doi | |
035 | |a (OCoLC)869861369 | ||
035 | |a (DE-599)BVBBV042422149 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rosenblum, Marvin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topics in Hardy Classes and Univalent Functions |c by Marvin Rosenblum, James Rovnyak |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1994 | |
300 | |a 1 Online-Ressource (XII, 250 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Birkhäuser Advanced Texts, Basler Lehrbücher | |
500 | |a These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origi nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from proper ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hardy-Klasse |0 (DE-588)4159107-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schlichte Funktion |0 (DE-588)4131418-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hardy-Klasse |0 (DE-588)4159107-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Schlichte Funktion |0 (DE-588)4131418-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Rovnyak, James |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8520-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857566 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096159363072 |
---|---|
any_adam_object | |
author | Rosenblum, Marvin |
author_facet | Rosenblum, Marvin |
author_role | aut |
author_sort | Rosenblum, Marvin |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV042422149 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869861369 (DE-599)BVBBV042422149 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8520-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03158nmm a2200505zc 4500</leader><controlfield tag="001">BV042422149</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034885201</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8520-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896627</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9662-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8520-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869861369</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422149</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rosenblum, Marvin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in Hardy Classes and Univalent Functions</subfield><subfield code="c">by Marvin Rosenblum, James Rovnyak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 250 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Birkhäuser Advanced Texts, Basler Lehrbücher</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origi nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from proper ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hardy-Klasse</subfield><subfield code="0">(DE-588)4159107-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hardy-Klasse</subfield><subfield code="0">(DE-588)4159107-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schlichte Funktion</subfield><subfield code="0">(DE-588)4131418-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rovnyak, James</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8520-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857566</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422149 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034885201 9783034896627 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857566 |
oclc_num | 869861369 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 250 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Birkhäuser Advanced Texts, Basler Lehrbücher |
spelling | Rosenblum, Marvin Verfasser aut Topics in Hardy Classes and Univalent Functions by Marvin Rosenblum, James Rovnyak Basel Birkhäuser Basel 1994 1 Online-Ressource (XII, 250 p) txt rdacontent c rdamedia cr rdacarrier Birkhäuser Advanced Texts, Basler Lehrbücher These notes are based on lectures given at the University of Virginia over the past twenty years. They may be viewed as a course in function theory for nonspecialists. Chapters 1-6 give the function-theoretic background to Hardy Classes and Operator Theory, Oxford Mathematical Monographs, Oxford University Press, New York, 1985. These chapters were written first, and they were origi nally intended to be a part of that book. Half-plane function theory continues to be useful for applications and is a focal point in our account (Chapters 5 and 6). The theory of Hardy and Nevanlinna classes is derived from proper ties of harmonic majorants of subharmonic functions (Chapters 3 and 4). A selfcontained treatment of harmonic and subharmonic functions is included (Chapters 1 and 2). Chapters 7-9 present concepts from the theory of univalent functions and Loewner families leading to proofs of the Bieberbach, Robertson, and Milin conjectures. Their purpose is to make the work of de Branges accessible to students of operator theory. These chapters are by the second author. There is a high degree of independence in the chapters, allowing the material to be used in a variety of ways. For example, Chapters 5-6 can be studied alone by readers familiar with function theory on the unit disk. Chapters 7-9 have been used as the basis for a one-semester topics course Mathematics Mathematics, general Mathematik Hardy-Klasse (DE-588)4159107-0 gnd rswk-swf Schlichte Funktion (DE-588)4131418-9 gnd rswk-swf Hardy-Klasse (DE-588)4159107-0 s 1\p DE-604 Schlichte Funktion (DE-588)4131418-9 s 2\p DE-604 Rovnyak, James Sonstige oth https://doi.org/10.1007/978-3-0348-8520-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rosenblum, Marvin Topics in Hardy Classes and Univalent Functions Mathematics Mathematics, general Mathematik Hardy-Klasse (DE-588)4159107-0 gnd Schlichte Funktion (DE-588)4131418-9 gnd |
subject_GND | (DE-588)4159107-0 (DE-588)4131418-9 |
title | Topics in Hardy Classes and Univalent Functions |
title_auth | Topics in Hardy Classes and Univalent Functions |
title_exact_search | Topics in Hardy Classes and Univalent Functions |
title_full | Topics in Hardy Classes and Univalent Functions by Marvin Rosenblum, James Rovnyak |
title_fullStr | Topics in Hardy Classes and Univalent Functions by Marvin Rosenblum, James Rovnyak |
title_full_unstemmed | Topics in Hardy Classes and Univalent Functions by Marvin Rosenblum, James Rovnyak |
title_short | Topics in Hardy Classes and Univalent Functions |
title_sort | topics in hardy classes and univalent functions |
topic | Mathematics Mathematics, general Mathematik Hardy-Klasse (DE-588)4159107-0 gnd Schlichte Funktion (DE-588)4131418-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Hardy-Klasse Schlichte Funktion |
url | https://doi.org/10.1007/978-3-0348-8520-1 |
work_keys_str_mv | AT rosenblummarvin topicsinhardyclassesandunivalentfunctions AT rovnyakjames topicsinhardyclassesandunivalentfunctions |