The Lie Algebras su(N): An Introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2003
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Lie algebras are efficient tools for analyzing the properties of physical systems. Concrete applications comprise the formulation of symmetries of Hamiltonian systems, the description of atomic, molecular and nuclear spectra, the physics of elementary particles and many others. This work gives an introduction to the properties and the structure of the Lie algebras su(n). First, characteristic quantities such as structure constants, the Killing form and functions of Lie algebras are introduced. The properties of the algebras su(2), su(3) and su(4) are investigated in detail. Geometric models of the representations are developed. A lot of care is taken over the use of the term "multiplet of an algebra". The book features an elementary (matrix) access to su(N)-algebras, and gives a first insight into Lie algebras. Student readers should be enabled to begin studies on physical su(N)-applications, instructors will profit from the detailed calculations and examples |
Beschreibung: | 1 Online-Ressource (VI, 116p) |
ISBN: | 9783034880978 9783764324186 |
DOI: | 10.1007/978-3-0348-8097-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422040 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783034880978 |c Online |9 978-3-0348-8097-8 | ||
020 | |a 9783764324186 |c Print |9 978-3-7643-2418-6 | ||
024 | 7 | |a 10.1007/978-3-0348-8097-8 |2 doi | |
035 | |a (OCoLC)879621122 | ||
035 | |a (DE-599)BVBBV042422040 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.46 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pfeifer, Walter |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Lie Algebras su(N) |b An Introduction |c by Walter Pfeifer |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2003 | |
300 | |a 1 Online-Ressource (VI, 116p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Lie algebras are efficient tools for analyzing the properties of physical systems. Concrete applications comprise the formulation of symmetries of Hamiltonian systems, the description of atomic, molecular and nuclear spectra, the physics of elementary particles and many others. This work gives an introduction to the properties and the structure of the Lie algebras su(n). First, characteristic quantities such as structure constants, the Killing form and functions of Lie algebras are introduced. The properties of the algebras su(2), su(3) and su(4) are investigated in detail. Geometric models of the representations are developed. A lot of care is taken over the use of the term "multiplet of an algebra". The book features an elementary (matrix) access to su(N)-algebras, and gives a first insight into Lie algebras. Student readers should be enabled to begin studies on physical su(N)-applications, instructors will profit from the detailed calculations and examples | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Associative Rings and Algebras | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Spezielle unitäre Gruppe |0 (DE-588)4323137-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | 1 | |a Spezielle unitäre Gruppe |0 (DE-588)4323137-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8097-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857457 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095890927616 |
---|---|
any_adam_object | |
author | Pfeifer, Walter |
author_facet | Pfeifer, Walter |
author_role | aut |
author_sort | Pfeifer, Walter |
author_variant | w p wp |
building | Verbundindex |
bvnumber | BV042422040 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879621122 (DE-599)BVBBV042422040 |
dewey-full | 512.46 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.46 |
dewey-search | 512.46 |
dewey-sort | 3512.46 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8097-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02707nmm a2200517zc 4500</leader><controlfield tag="001">BV042422040</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034880978</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8097-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764324186</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2418-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8097-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879621122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422040</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.46</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pfeifer, Walter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Lie Algebras su(N)</subfield><subfield code="b">An Introduction</subfield><subfield code="c">by Walter Pfeifer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 116p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lie algebras are efficient tools for analyzing the properties of physical systems. Concrete applications comprise the formulation of symmetries of Hamiltonian systems, the description of atomic, molecular and nuclear spectra, the physics of elementary particles and many others. This work gives an introduction to the properties and the structure of the Lie algebras su(n). First, characteristic quantities such as structure constants, the Killing form and functions of Lie algebras are introduced. The properties of the algebras su(2), su(3) and su(4) are investigated in detail. Geometric models of the representations are developed. A lot of care is taken over the use of the term "multiplet of an algebra". The book features an elementary (matrix) access to su(N)-algebras, and gives a first insight into Lie algebras. Student readers should be enabled to begin studies on physical su(N)-applications, instructors will profit from the detailed calculations and examples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle unitäre Gruppe</subfield><subfield code="0">(DE-588)4323137-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spezielle unitäre Gruppe</subfield><subfield code="0">(DE-588)4323137-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8097-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857457</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422040 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034880978 9783764324186 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857457 |
oclc_num | 879621122 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 116p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Basel |
record_format | marc |
spelling | Pfeifer, Walter Verfasser aut The Lie Algebras su(N) An Introduction by Walter Pfeifer Basel Birkhäuser Basel 2003 1 Online-Ressource (VI, 116p) txt rdacontent c rdamedia cr rdacarrier Lie algebras are efficient tools for analyzing the properties of physical systems. Concrete applications comprise the formulation of symmetries of Hamiltonian systems, the description of atomic, molecular and nuclear spectra, the physics of elementary particles and many others. This work gives an introduction to the properties and the structure of the Lie algebras su(n). First, characteristic quantities such as structure constants, the Killing form and functions of Lie algebras are introduced. The properties of the algebras su(2), su(3) and su(4) are investigated in detail. Geometric models of the representations are developed. A lot of care is taken over the use of the term "multiplet of an algebra". The book features an elementary (matrix) access to su(N)-algebras, and gives a first insight into Lie algebras. Student readers should be enabled to begin studies on physical su(N)-applications, instructors will profit from the detailed calculations and examples Mathematics Algebra Geometry Mathematical physics Associative Rings and Algebras Mathematical Methods in Physics Mathematik Mathematische Physik Spezielle unitäre Gruppe (DE-588)4323137-8 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 s Spezielle unitäre Gruppe (DE-588)4323137-8 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8097-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pfeifer, Walter The Lie Algebras su(N) An Introduction Mathematics Algebra Geometry Mathematical physics Associative Rings and Algebras Mathematical Methods in Physics Mathematik Mathematische Physik Spezielle unitäre Gruppe (DE-588)4323137-8 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4323137-8 (DE-588)4130355-6 |
title | The Lie Algebras su(N) An Introduction |
title_auth | The Lie Algebras su(N) An Introduction |
title_exact_search | The Lie Algebras su(N) An Introduction |
title_full | The Lie Algebras su(N) An Introduction by Walter Pfeifer |
title_fullStr | The Lie Algebras su(N) An Introduction by Walter Pfeifer |
title_full_unstemmed | The Lie Algebras su(N) An Introduction by Walter Pfeifer |
title_short | The Lie Algebras su(N) |
title_sort | the lie algebras su n an introduction |
title_sub | An Introduction |
topic | Mathematics Algebra Geometry Mathematical physics Associative Rings and Algebras Mathematical Methods in Physics Mathematik Mathematische Physik Spezielle unitäre Gruppe (DE-588)4323137-8 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Mathematics Algebra Geometry Mathematical physics Associative Rings and Algebras Mathematical Methods in Physics Mathematik Mathematische Physik Spezielle unitäre Gruppe Lie-Algebra |
url | https://doi.org/10.1007/978-3-0348-8097-8 |
work_keys_str_mv | AT pfeiferwalter theliealgebrassunanintroduction |