Topics in Interpolation Theory of Rational Matrix-valued Functions:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gohberg, Yiśrāʿēl Z. 1928-2009 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 1988
Schriftenreihe:Operator Theory: Advances and Applications 33
Schlagworte:
Online-Zugang:Volltext
Beschreibung:One of the basic interpolation problems from our point of view is the problem of building a scalar rational function if its poles and zeros with their multiplicities are given. If one assurnes that the function does not have a pole or a zero at infinity, the formula which solves this problem is (1) where Zl , " " Z/ are the given zeros with given multiplicates nl, " " n / and Wb" " W are the given p poles with given multiplicities ml, . . . ,m , and a is an arbitrary nonzero number. p An obvious necessary and sufficient condition for solvability of this simplest Interpolation pr- lern is that Zj :f: wk(1~ j ~ 1, 1~ k~ p) and nl +. . . +n/ = ml +. . . +m ' p The second problem of interpolation in which we are interested is to build a rational matrix function via its zeros which on the imaginary line has modulus 1. In the case the function is scalar, the formula which solves this problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj's are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n
Beschreibung:1 Online-Ressource (IX, 247 p)
ISBN:9783034854696
9783034854719
ISSN:0255-0156
DOI:10.1007/978-3-0348-5469-6

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen