Basic Concepts of Synthetic Differential Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1996
|
Schriftenreihe: | Kluwer Texts in the Mathematical Sciences, A Graduate-Level Book Series
13 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 Volltext |
Beschreibung: | Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians |
Beschreibung: | 1 Online-Ressource (XV, 320 p) |
ISBN: | 9781475745887 |
ISSN: | 0927-4529 |
DOI: | 10.1007/978-1-4757-4588-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421628 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781475745887 |c Online |9 978-1-4757-4588-7 | ||
024 | 7 | |a 10.1007/978-1-4757-4588-7 |2 doi | |
035 | |a (OCoLC)1184505581 | ||
035 | |a (DE-599)BVBBV042421628 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lavendhomme, René |e Verfasser |4 aut | |
245 | 1 | 0 | |a Basic Concepts of Synthetic Differential Geometry |c by René Lavendhomme |
264 | 1 | |a Boston, MA |b Springer US |c 1996 | |
300 | |a 1 Online-Ressource (XV, 320 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Kluwer Texts in the Mathematical Sciences, A Graduate-Level Book Series |v 13 |x 0927-4529 | |
500 | |a Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Synthetische Differentialgeometrie |0 (DE-588)4462361-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Synthetische Differentialgeometrie |0 (DE-588)4462361-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-4419-4756-7 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4588-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857045 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-1-4757-4588-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4757-4588-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4757-4588-7 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4757-4588-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153094933577728 |
---|---|
any_adam_object | |
author | Lavendhomme, René |
author_facet | Lavendhomme, René |
author_role | aut |
author_sort | Lavendhomme, René |
author_variant | r l rl |
building | Verbundindex |
bvnumber | BV042421628 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)1184505581 (DE-599)BVBBV042421628 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-4588-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03309nmm a2200577zcb4500</leader><controlfield tag="001">BV042421628</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475745887</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4588-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4588-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184505581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421628</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lavendhomme, René</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic Concepts of Synthetic Differential Geometry</subfield><subfield code="c">by René Lavendhomme</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 320 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Kluwer Texts in the Mathematical Sciences, A Graduate-Level Book Series</subfield><subfield code="v">13</subfield><subfield code="x">0927-4529</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Synthetische Differentialgeometrie</subfield><subfield code="0">(DE-588)4462361-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Synthetische Differentialgeometrie</subfield><subfield code="0">(DE-588)4462361-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-4419-4756-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4588-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857045</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-4588-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-4588-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-4588-7</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-4588-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042421628 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475745887 |
issn | 0927-4529 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857045 |
oclc_num | 1184505581 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 320 p) |
psigel | ZDB-2-SMA ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer US |
record_format | marc |
series2 | Kluwer Texts in the Mathematical Sciences, A Graduate-Level Book Series |
spelling | Lavendhomme, René Verfasser aut Basic Concepts of Synthetic Differential Geometry by René Lavendhomme Boston, MA Springer US 1996 1 Online-Ressource (XV, 320 p) txt rdacontent c rdamedia cr rdacarrier Kluwer Texts in the Mathematical Sciences, A Graduate-Level Book Series 13 0927-4529 Starting at an introductory level, the book leads rapidly to important and often new results in synthetic differential geometry. From rudimentary analysis the book moves to such important results as: a new proof of De Rham's theorem; the synthetic view of global action, going as far as the Weil characteristic homomorphism; the systematic account of structured Lie objects, such as Riemannian, symplectic, or Poisson Lie objects; the view of global Lie algebras as Lie algebras of a Lie group in the synthetic sense; and lastly the synthetic construction of symplectic structure on the cotangent bundle in general. Thus while the book is limited to a naive point of view developing synthetic differential geometry as a theory in itself, the author nevertheless treats somewhat advanced topics, which are classic in classical differential geometry but new in the synthetic context. Audience: The book is suitable as an introduction to synthetic differential geometry for students as well as more qualified mathematicians Mathematics Algebra Global differential geometry Logic, Symbolic and mathematical Cell aggregation / Mathematics Differential Geometry Category Theory, Homological Algebra Mathematical Logic and Foundations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Synthetische Differentialgeometrie (DE-588)4462361-6 gnd rswk-swf Synthetische Differentialgeometrie (DE-588)4462361-6 s 1\p DE-604 Erscheint auch als Druckausgabe 978-1-4419-4756-7 https://doi.org/10.1007/978-1-4757-4588-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lavendhomme, René Basic Concepts of Synthetic Differential Geometry Mathematics Algebra Global differential geometry Logic, Symbolic and mathematical Cell aggregation / Mathematics Differential Geometry Category Theory, Homological Algebra Mathematical Logic and Foundations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Synthetische Differentialgeometrie (DE-588)4462361-6 gnd |
subject_GND | (DE-588)4462361-6 |
title | Basic Concepts of Synthetic Differential Geometry |
title_auth | Basic Concepts of Synthetic Differential Geometry |
title_exact_search | Basic Concepts of Synthetic Differential Geometry |
title_full | Basic Concepts of Synthetic Differential Geometry by René Lavendhomme |
title_fullStr | Basic Concepts of Synthetic Differential Geometry by René Lavendhomme |
title_full_unstemmed | Basic Concepts of Synthetic Differential Geometry by René Lavendhomme |
title_short | Basic Concepts of Synthetic Differential Geometry |
title_sort | basic concepts of synthetic differential geometry |
topic | Mathematics Algebra Global differential geometry Logic, Symbolic and mathematical Cell aggregation / Mathematics Differential Geometry Category Theory, Homological Algebra Mathematical Logic and Foundations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Synthetische Differentialgeometrie (DE-588)4462361-6 gnd |
topic_facet | Mathematics Algebra Global differential geometry Logic, Symbolic and mathematical Cell aggregation / Mathematics Differential Geometry Category Theory, Homological Algebra Mathematical Logic and Foundations Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Synthetische Differentialgeometrie |
url | https://doi.org/10.1007/978-1-4757-4588-7 |
work_keys_str_mv | AT lavendhommerene basicconceptsofsyntheticdifferentialgeometry |