Elements of Applied Bifurcation Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2004
|
Ausgabe: | Third Edition |
Schriftenreihe: | Applied Mathematical Sciences
112 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations. The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis. Reviews of earlier editions: "I know of no other book that so clearly explains the basic phenomena of bifurcation theory." - Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." - Bulletin of the AMS "It is both a toolkit and a primer" - UK Nonlinear News |
Beschreibung: | 1 Online-Ressource (XXII, 632 p) |
ISBN: | 9781475739787 9781441919519 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-1-4757-3978-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421553 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781475739787 |c Online |9 978-1-4757-3978-7 | ||
020 | |a 9781441919519 |c Print |9 978-1-4419-1951-9 | ||
024 | 7 | |a 10.1007/978-1-4757-3978-7 |2 doi | |
035 | |a (OCoLC)863898785 | ||
035 | |a (DE-599)BVBBV042421553 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.48 |2 23 | |
082 | 0 | |a 515.39 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kuznetsov, Yuri A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elements of Applied Bifurcation Theory |c by Yuri A. Kuznetsov |
250 | |a Third Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 2004 | |
300 | |a 1 Online-Ressource (XXII, 632 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 112 |x 0066-5452 | |
500 | |a This is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations. The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis. Reviews of earlier editions: "I know of no other book that so clearly explains the basic phenomena of bifurcation theory." - Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." - Bulletin of the AMS "It is both a toolkit and a primer" - UK Nonlinear News | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3978-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856970 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094747979776 |
---|---|
any_adam_object | |
author | Kuznetsov, Yuri A. |
author_facet | Kuznetsov, Yuri A. |
author_role | aut |
author_sort | Kuznetsov, Yuri A. |
author_variant | y a k ya yak |
building | Verbundindex |
bvnumber | BV042421553 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863898785 (DE-599)BVBBV042421553 |
dewey-full | 515.48 515.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.48 515.39 |
dewey-search | 515.48 515.39 |
dewey-sort | 3515.48 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3978-7 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03259nmm a2200517zcb4500</leader><controlfield tag="001">BV042421553</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475739787</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3978-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441919519</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-1951-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3978-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863898785</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421553</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuznetsov, Yuri A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of Applied Bifurcation Theory</subfield><subfield code="c">by Yuri A. Kuznetsov</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 632 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">112</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations. The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis. Reviews of earlier editions: "I know of no other book that so clearly explains the basic phenomena of bifurcation theory." - Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." - Bulletin of the AMS "It is both a toolkit and a primer" - UK Nonlinear News</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3978-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856970</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421553 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475739787 9781441919519 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856970 |
oclc_num | 863898785 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 632 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Kuznetsov, Yuri A. Verfasser aut Elements of Applied Bifurcation Theory by Yuri A. Kuznetsov Third Edition New York, NY Springer New York 2004 1 Online-Ressource (XXII, 632 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 112 0066-5452 This is a book on nonlinear dynamical systems and their bifurcations under parameter variation. It provides a reader with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems. Special attention is given to efficient numerical implementations of the developed techniques. Several examples from recent research papers are used as illustrations. The book is designed for advanced undergraduate or graduate students in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the previous editions, while updating the context to incorporate recent theoretical and software developments and modern techniques for bifurcation analysis. Reviews of earlier editions: "I know of no other book that so clearly explains the basic phenomena of bifurcation theory." - Math Reviews "The book is a fine addition to the dynamical systems literature. It is good to see, in our modern rush to quick publication, that we, as a mathematical community, still have time to bring together, and in such a readable and considered form, the important results on our subject." - Bulletin of the AMS "It is both a toolkit and a primer" - UK Nonlinear News Mathematics Differentiable dynamical systems Differential Equations Dynamical Systems and Ergodic Theory Ordinary Differential Equations Applications of Mathematics Mathematik Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 s 1\p DE-604 https://doi.org/10.1007/978-1-4757-3978-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kuznetsov, Yuri A. Elements of Applied Bifurcation Theory Mathematics Differentiable dynamical systems Differential Equations Dynamical Systems and Ergodic Theory Ordinary Differential Equations Applications of Mathematics Mathematik Verzweigung Mathematik (DE-588)4078889-1 gnd |
subject_GND | (DE-588)4078889-1 |
title | Elements of Applied Bifurcation Theory |
title_auth | Elements of Applied Bifurcation Theory |
title_exact_search | Elements of Applied Bifurcation Theory |
title_full | Elements of Applied Bifurcation Theory by Yuri A. Kuznetsov |
title_fullStr | Elements of Applied Bifurcation Theory by Yuri A. Kuznetsov |
title_full_unstemmed | Elements of Applied Bifurcation Theory by Yuri A. Kuznetsov |
title_short | Elements of Applied Bifurcation Theory |
title_sort | elements of applied bifurcation theory |
topic | Mathematics Differentiable dynamical systems Differential Equations Dynamical Systems and Ergodic Theory Ordinary Differential Equations Applications of Mathematics Mathematik Verzweigung Mathematik (DE-588)4078889-1 gnd |
topic_facet | Mathematics Differentiable dynamical systems Differential Equations Dynamical Systems and Ergodic Theory Ordinary Differential Equations Applications of Mathematics Mathematik Verzweigung Mathematik |
url | https://doi.org/10.1007/978-1-4757-3978-7 |
work_keys_str_mv | AT kuznetsovyuria elementsofappliedbifurcationtheory |